On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem

被引:0
作者
Ya. Sh. Il'yasov
机构
[1] Russian Academy of Sciences,V. A. Steklov Mathematics Institute
来源
Mathematical Notes | 1998年 / 64卷
关键词
Elliptic boundary value problem; eigenvalue problem; constrained variational problem; basic solution; asymptotic solution; fibering method;
D O I
暂无
中图分类号
学科分类号
摘要
The following elliptic equations withp-Laplacian\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \Delta _p u = \lambda g(x)\left| u \right|^{p - 2} u + f(x)\left| u \right|^{\gamma - 2} u$$ \end{document} are considered in the entire space ℝN and in the bounded domain with the Dirichlet boundary conditions. By the fibering method for the basic positive solutions of these equations, we derive the following asymptotic formula\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u^\lambda = (\lambda _1 - \lambda )^{1/(\gamma - p)} u_1 + o((\lambda _1 - \lambda )^{1/(\gamma - p)} )$$ \end{document} for λ↑λ1, where λ1 is the first eigenvalue and u1 is the corresponding eigenfunction of nonperturbed problem (ƒ=0).
引用
收藏
页码:471 / 475
页数:4
相关论文
共 11 条
[1]  
Drabek P.(1997)Positive solutions for the Proc. Roy. Soc. Edinburgh. Sect. A 127 703-726
[2]  
Pokhozhaev S. I.(1993)-Laplacian: Application of the fibering method Calc. Var. Partial Differential Equations 1 439-475
[3]  
Alama S.(1993)On semilinear elliptic equations with indefinite nonlinearities C. R. Acad. Sci. Paris. Sér. I. Math. 317 945-950
[4]  
Tarantello G.(1995)Problèmes elliptiques idéfinis et théorèmes de Liouville nonlinéaires Trans. Amer. Math. Soc. 347 4839-4855
[5]  
Berestycki H.(1192)Multiple solutions for semilinear elliptic equation Trans. Amer. Math. Soc. 331 503-527
[6]  
Capuzzo-Dolcetta I.(1990)On the positive solutions of semilinear equations Δ Trudy Mat. Inst. Steklov 192 140-163
[7]  
Nirenberg L.(undefined)=0 on compact manifolds undefined undefined undefined-undefined
[8]  
del Pino M. A.(undefined)On the fibering method for solutions of nonlinear boundary value problems undefined undefined undefined-undefined
[9]  
Felmer L. P.(undefined)undefined undefined undefined undefined-undefined
[10]  
Ouyang T.(undefined)undefined undefined undefined undefined-undefined