Rigidity of 2-Step Carnot Groups

被引:0
作者
Mauricio Godoy Molina
Boris Kruglikov
Irina Markina
Alexander Vasil’ev
机构
[1] Universidad de la Frontera,Departamento de Matemática y Estadística
[2] UiT The Arctic University of Norway,Department of Mathematics and Statistics
[3] University of Stavanger,Department of Mathematics and Natural Sciences
[4] University of Bergen,Department of Mathematics
来源
The Journal of Geometric Analysis | 2018年 / 28卷
关键词
Clifford algebra; Clifford module; Tanaka prolongation; Pseudo ; -type algebra; -type algebra; -condition; Rigidity; 17B30; 17B70; 16W55; 22E60;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we study the rigidity of 2-step Carnot groups, or equivalently, of graded 2-step nilpotent Lie algebras. We prove the alternative that depending on bi-dimensions of the algebra, the Lie algebra structure makes it either always of infinite type or generically rigid, and we specify the bi-dimensions for each of the choices. Explicit criteria for rigidity of pseudo H- and J-type algebras are given. In particular, we establish the relation of the so-called J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^2$$\end{document}-condition to rigidity, and we explore these conditions in relation to pseudo H-type algebras.
引用
收藏
页码:1477 / 1501
页数:24
相关论文
共 63 条
[1]  
Alekseevsky DV(1997)Classification of Commun. Math. Phys. 183 477-510
[2]  
Cortés V(2005)-(super)-extended Poincaré algebras and bilinear invariants of the spinor representation of Commun. Math. Phys. 253 385-422
[3]  
Alekseevsky DV(2014)Polyvector super-Poincaré algebras Adv. Math. 265 60-96
[4]  
Cortés V(2014)Classification of maximal transitive prolongations of super-Poincaré algebras Indiana Univ. Math. J. 63 91-117
[5]  
Devchand C(2011)Tanaka structures modeled on extended Poincaré algebras Adv. Math. 228 1435-1465
[6]  
Van Proeyen A(2002)Rank 2 distributions of Monge equations: symmetries, equivalences, extensions J. Algebra 261 448-467
[7]  
Altomani A(2012)On dense free subgroups of Lie groups Ann. Global Anal. Geom. 41 381-390
[8]  
Santi A(2000)Pseudo-Riemannian weakly symmetric manifolds Ann. Mat. Pura Appl. 178 1-32
[9]  
Altomani A(2005)Scalar products on Clifford modules and pseudo- Proc. Am. Math. Soc. 133 1611-1616
[10]  
Santi A(2009)-type Lie algebras Houst. J. Math. 35 49-72