On Co-polynomials and d-Orthogonality

被引:0
|
作者
Saib A. [1 ]
机构
[1] Department of Mathematics, Larbi Tebessi University, Tebessa
来源
La Matematica | 2024年 / 3卷 / 1期
关键词
Casorati determinant; d-orthogonal polynomials; Darboux transformation; Quasi-orthogonality; Totally positive matrices; Zeros of polynomials;
D O I
10.1007/s44007-023-00076-9
中图分类号
学科分类号
摘要
This paper deals with the theory of d-orthogonal polynomials and it aims to find out some sufficient conditions for the zeros of the above polynomials to be real and distinct using Darboux factorization together with the properties of totally positive matrices. We shall show that such condition exists and it requires the recurrence coefficients to be strictly positive. The so-called co-polynomials are deeply investigated and they are explicitly expressed in terms of the basic solutions. Some of them are used to determine the entries of the matrices in LU and UL decomposition of Hessenberg matrix. Moreover, some Casorati determinants with co-polynomials entries are considered. © The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023.
引用
收藏
页码:45 / 78
页数:33
相关论文
共 50 条
  • [1] d-orthogonality of Hermite type polynomials
    Lamiri, I.
    Ouni, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) : 24 - 43
  • [2] Hahn-Appell polynomials and their d-orthogonality
    Serhan Varma
    Banu Yılmaz Yaşar
    Mehmet Ali Özarslan
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2127 - 2143
  • [3] d-Orthogonality of some basic hypergeometric polynomials
    Lamiri, Imed
    Ouni, Abdelwaheb
    GEORGIAN MATHEMATICAL JOURNAL, 2013, 20 (04) : 729 - 751
  • [4] Hahn-Appell polynomials and their d-orthogonality
    Varma, Serhan
    Yasar, Banu Yilmaz
    Ozarslan, Mehmet Ali
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2127 - 2143
  • [5] d-Orthogonality of Humbert and Jacobi type polynomials
    Lamiri, I.
    Ouni, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 24 - 51
  • [6] Higher-order matching polynomials and d-orthogonality
    Drake, Dan
    ADVANCES IN APPLIED MATHEMATICS, 2011, 46 (1-4) : 226 - 246
  • [7] d-orthogonality of a generalization of both Laguerre and Hermite polynomials
    Blel, Mongi
    Ben Cheikh, Youssef
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (02) : 183 - 190
  • [8] d-orthogonality of discrete q-Hermite type polynomials
    Lamiri, Imed
    JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 116 - 133
  • [9] d-orthogonality of Little q-Laguerre type polynomials
    Ben Cheikh, Y.
    Lamiri, I.
    Ouni, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (01) : 74 - 84
  • [10] Riordan arrays and d-orthogonality
    Krelifa, Ali
    Zerouki, Ebtissem
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 515 : 331 - 353