Stochastic solutions of generalized time-fractional evolution equations

被引:0
作者
Christian Bender
Yana A. Butko
机构
[1] Saarland University,Faculty of Mathematics and Computer Science
[2] Technical University of Braunschweig,Institute of Mathematical Stochastics
来源
Fractional Calculus and Applied Analysis | 2022年 / 25卷
关键词
Time-fractional evolution equations (primary); Fractional calculus; Randomly scaled Gaussian processes; Randomly scaled Lévy processes; Randomely slowed-down / speeded-up Lévy processes; Linear fractional Lévy motion; Generalized grey Brownian motion; Inverse subordinators; Marichev-Saigo-Maeda operators of fractional calculus; Appell functions; Three parameter Mittag-Leffler function; Feynman-Kac formulae; Anomalous diffusion; 26A33 (primary); 33E12; 34A08; 34K37; 35R11; 60G22;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a general class of integro-differential evolution equations which includes the governing equation of the generalized grey Brownian motion and the time- and space-fractional heat equation. We present a general relation between the parameters of the equation and the distribution of the underlying stochastic processes, as well as discuss different classes of processes providing stochastic solutions of these equations. For a subclass of evolution equations, containing Marichev-Saigo-Maeda time-fractional operators, we determine the parameters of the corresponding processes explicitly. Moreover, we explain how self-similar stochastic solutions with stationary increments can be obtained via linear fractional Lévy motion for suitable pseudo-differential operators in space.
引用
收藏
页码:488 / 519
页数:31
相关论文
共 57 条
  • [1] Albeverio S(1999)The probabilistic Feynman-Kac formula for an infinite-dimensional Schrödinger equation with exponential and singular potentials Potential Anal. 11 157-181
  • [2] Khrennikov A(2012)Phase-space consistency of stellar dynamical models determined by separable augmented densities Monthly Notices of the Royal Astronomical Society 422 652-664
  • [3] Smolyanov OG(2020)Time-changed fractional Ornstein-Uhlenbeck process Fract. Calc. Appl. Anal. 23 450-483
  • [4] An J(2001)Stochastic solutions for fractional Cauchy problems Fract. Calc. Appl. Anal. 4 481-500
  • [5] Van Hese E(2020)Integral representation of generalized grey Brownian motion Stochastics 92 552-565
  • [6] Baes M(2006)The Feynman-Kac-Ito formula for an infinite-dimensional Schrödinger equation with scalar and vector potentials Nelin. Dinam 2 75-87
  • [7] Ascione G(2017)Existence and upper bound for the density of solutions of stochastic differential equations driven by generalized grey noise Stochastics 89 1116-1126
  • [8] Mishura Yu(2018)Singularity of generalized grey Brownian motions with different parameters Stoch. Anal. Appl. 36 726-732
  • [9] Pirozzi E(2019)Structure factors for generalized grey Browinian motion Fract. Calc. Appl. Anal. 22 396-411
  • [10] Baeumer B(1980)Sur une résolution stochastique de l’équation de Schrödinger à coefficients analytiques Comm. Math. Phys. 73 247-264