Reanalysis of the Das et al. sum rule and application to chiral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(p^4)$\end{document} parameters

被引:0
作者
B. Moussallam
机构
[1] I.P.N.,
[2] Division de Physique Théorique,undefined
[3] Université Paris-Sud,undefined
[4] F-91406 Orsay Cédex (e-mail: moussall@ipno.in2p3.fr) ,undefined
关键词
Matrix Element; Euclidian Space; Spectral Function; Exact Result; Precise Evaluation;
D O I
10.1007/s100529800955
中图分类号
学科分类号
摘要
A sum rule due to Das et al. is reanalyzed using a euclidian space approach and a Padé resummation procedure. It is shown that the result is essentially determined by the matrix elements of dimension six and dimension eight operators which have recently been measured by the ALEPH collaboration. The result is further improved by using the vector spectral function which must be extrapolated to the chiral limit. This extrapolation is shown to be reliably performed under the constraint of a set of sum rules. The sum rule is employed not as an approximation to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{\pi^+}-M_{\pi^0}$\end{document} but as an exact result for a chiral low-energy parameter. A sufficiently precise evaluation provides also an estimate for a combination of subleading electromagnetic low-energy parameters.
引用
收藏
页码:681 / 691
页数:10
相关论文
empty
未找到相关数据