Some results on matrix transformation and compactness for fibonomial sequence spaces

被引:0
作者
Muhammet Cihat Dağlı
Taja Yaying
机构
[1] Akdeniz University,Department of Mathematics
[2] Dera Natung Government College,Department of Mathematics
来源
Acta Scientiarum Mathematicarum | 2023年 / 89卷
关键词
Fibonomial sequence spaces; Schauder basis; Matrix transformation; duals; Compact operators; 40C05; 46B45; 46A45; 47B37; 47B07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the Fibonomial sequence spaces b0r,s,F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{0}^{r,s,F}$$\end{document} and bcr,s,F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{c}^{r,s,F}$$\end{document} and show that these are linearly isomorphic to the spaces c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{0}$$\end{document} and c,  respectively. In addition, we present α-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -$$\end{document}dual, β-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta -$$\end{document}dual and γ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma -$$\end{document}dual for those spaces and characterize certain matrix classes. In the final section, we obtain some criteria for the compactness of certain matrix operators via Hausdorff measure of noncompactness on the space b0r,s,F.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{0}^{r,s,F}.$$\end{document}
引用
收藏
页码:593 / 609
页数:16
相关论文
共 97 条
[1]  
Altay B(2007)The matrix domain and the fine spectrum of the difference operator Commun. Math. Anal. 2 1-11
[2]  
Başar F(2007) on the sequence space J. Math. Anal. Appl. 336 632-645
[3]  
Altay B(2005), Ukr. Math. J. 57 1-17
[4]  
Başar F(2009)Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space Appl. Math. Comput. 211 255-264
[5]  
Altay B(2006)On some Euler sequence spaces of non-absolute type Inf. Sci. 176 1450-1462
[6]  
Başar F(2006)Matrix transformations on some sequence spaces related to strong Cesàro summability and boundedness Southeast Asian Bull. Math. 30 209-220
[7]  
Altay B(2004)On the Euler sequence spaces which include the spaces Hokkaido Math. J. 33 383-398
[8]  
Başar F(2004) and Appl. Math. Comput. 157 677-693
[9]  
Malkowsky E(2011) I Comput. Math. Appl. 61 602-611
[10]  
Altay B(2011)On some new Euler difference sequence spaces Appl. Math. Comput. 217 5199-5207