Solar-rotational oscillation and its harmonics in the solar-wind, geomagnetic and cosmic ray particles during the last two solar minima

被引:0
作者
Y. P. Singh
机构
[1] Mangalayatan University,IET
[2] Aligarh Muslim University,Department of Physics
来源
Astrophysics and Space Science | 2015年 / 359卷
关键词
Solar minimum; Solar rotational period and its harmonics; Solar wind; Geomagnetic indices; Cosmic ray particles; Wavelet analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The behavior of short-term oscillations (≤one solar rotation) of the solar-wind parameters, galactic cosmic rays and geomagnetic indices are discussed during the last two solar minima between cycles 22/23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$22/23$\end{document} and cycles 23/24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$23/24$\end{document}. There are strong signatures of short-term oscillations of all the selected time series during the early phase of the minima, where the high speed streams are prominent structures in the heliosphere and these signatures almost die out at the end of the two minima. Result also suggests that the second and third harmonics of one solar rotation period of few parameters are prominent during the minimum between the cycles 22 and 23. Moreover, all the sub-harmonics/quasi-oscillations are more consistent and deviate less during the recent deep prolonged minimum. Through this work, we are reporting ∼7.1 days, ∼5.5 days, ∼4.4 days, ∼3.3 days oscillations, observed in few solar-wind parameters [interplanetary magnetic field (B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(B)$\end{document}, RMS standard deviation in the magnetic field (σB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma_{B}$\end{document}), southward component of magnetic field (Bz)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathit{Bz})$\end{document} and electric field (Ey)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathit{Ey})$\end{document}] and geomagnetic (DsT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{\mathit{sT}}$\end{document} and AE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{AE}$\end{document}) parameters during the solar minimum between cycles 23 and 24, in addition to ∼1.9 days oscillations which is observed in Bz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{Bz}$\end{document}, Ey\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{Ey}$\end{document} and AE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{AE}$\end{document} parameters.
引用
收藏
相关论文
共 76 条
[11]  
Chowdhury P.C.(1993)Periodic variation in the geomagnetic activity: A study based on the Ap index J. Geophys. Res. 98 9215-9231
[12]  
Khan P.(1996)Solar active regions as diagnostics of subsurface conditions Annu. Rev. Astron. Astrophys. 34 75-109
[13]  
Ray D.P.(2012)Wavelet analysis on solar-wind parameters and geomagnetic indices Sol. Phys. 280 623-640
[14]  
Chowdhury S.(2014)Spectral analysis of geomagnetic activity indices and solar wind parameters J. Astron. Space Sci. 31 159-167
[15]  
Choudhary J.(2003)Short-term variations of cosmic-ray intensity and flare related data in 1981–1983 New Astron. 8 777-794
[16]  
Gosain M.(2013)The 27-day cosmic ray intensity variations during solar minimum 23/24 Sol. Phys. 286 593-607
[17]  
Moon B.A.(1982)Wave propagation and sampling theory-Part-I; Complex signal and scattering in multilayer media Geophysics 47 203-221
[18]  
Dikpati I.G.(1996)The 13.5-day periodicity in the Sun, solar wind and geomagnetic activity: The last three solar cycles J. Geophys. Res. 101 27077-27090
[19]  
Emery D.S.(1998)Solar excursion phases during the last 14 solar cycles Geophys. Res. Lett. 25 1851-1854
[20]  
Richardson F.J.(2002)Wavelet analysis of solar wind and geomagnetic parameter Sol. Phys. 208 359-373