Mittag–Leffler stability, control, and synchronization for chaotic generalized fractional-order systems

被引:0
|
作者
Tarek M. Abed-Elhameed
Tarek Aboelenen
机构
[1] Assiut University,Department of Mathematics, Faculty of Science
[2] Qassim University,Department of Mathematics, Unaizah College of Sciences and Arts
关键词
Chaotic systems; Generalized fractional order; Mittag–Leffler function; Lypunov direct method; Control methods; Synchronization; 26A33; 33E12; 37C75; 37D45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the generalized fractional system (GFS) with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. We present stability analysis of GFS by two methods. First, the stability analysis of that system using the Gronwall–Bellman (G–B) Lemma, the Mittag–Leffler (M–L) function, and the Laplace transform is introduced. Secondly, by the Lyapunov direct method, we study the M–L stability of our system with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. Using the modified predictor–corrector method, the solutions of GFSs are calculated and they are more complicated than the classical fractional one. Based on linear feedback control, we investigate a theorem to control the chaotic GFSs with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. We present an example to verify the validity of control theorem. We state and prove a theorem to calculate the analytical formula of controllers that are used to achieve synchronization between two different chaotic GFSs. An example to study the synchronization for systems with orders lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document} is given. We found an agreement between analytical results and numerical simulations.
引用
收藏
相关论文
共 50 条
  • [41] Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems
    Boulkroune, A.
    Bouzeriba, A.
    Bouden, T.
    NEUROCOMPUTING, 2016, 173 : 606 - 614
  • [42] Modified generalized projective synchronization of fractional-order chaotic Lü systems
    Jian Liu
    Shutang Liu
    Chunhua Yuan
    Advances in Difference Equations, 2013
  • [43] Generalized synchronization for fractional-order chaotic systems with same or different structure
    Min, Fu-Hong
    Wang, Zhi-Quan
    Kongzhi yu Juece/Control and Decision, 2008, 23 (09): : 1025 - 1029
  • [44] Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems
    Jiang, Cuimei
    Liu, Shutang
    Wang, Da
    ENTROPY, 2015, 17 (08): : 5199 - 5217
  • [45] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [46] Chaotic synchronization for a class of fractional-order chaotic systems
    Zhou Ping
    CHINESE PHYSICS, 2007, 16 (05): : 1263 - 1266
  • [47] Chaotic synchronization for a class of fractional-order chaotic systems
    Institute for Nonlinear Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    Chin. Phys., 2007, 5 (1263-1266):
  • [48] Adaptive control of Mittag-Leffler stabilization and synchronization for delayed fractional-order BAM neural networks
    Cheng, Weike
    Wu, Ailong
    Zhang, Jin-E
    Li, Biwen
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01):
  • [49] Passive Synchronization Control for Integer-order Chaotic Systems and Fractional-order Chaotic Systems
    Shao Keyong
    Bu Ruixuan
    Gao Wang
    Wang Qiutong
    Zhang Yi
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 1115 - 1119
  • [50] On Mittag-Leffler Stability of Fractional Order Difference Systems
    Wyrwas, Malgorzata
    Mozyrska, Dorota
    ADVANCES IN MODELLING AND CONTROL OF NON-INTEGER ORDER SYSTEMS, 2015, 320 : 209 - 220