Mittag–Leffler stability, control, and synchronization for chaotic generalized fractional-order systems

被引:0
|
作者
Tarek M. Abed-Elhameed
Tarek Aboelenen
机构
[1] Assiut University,Department of Mathematics, Faculty of Science
[2] Qassim University,Department of Mathematics, Unaizah College of Sciences and Arts
关键词
Chaotic systems; Generalized fractional order; Mittag–Leffler function; Lypunov direct method; Control methods; Synchronization; 26A33; 33E12; 37C75; 37D45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the generalized fractional system (GFS) with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. We present stability analysis of GFS by two methods. First, the stability analysis of that system using the Gronwall–Bellman (G–B) Lemma, the Mittag–Leffler (M–L) function, and the Laplace transform is introduced. Secondly, by the Lyapunov direct method, we study the M–L stability of our system with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. Using the modified predictor–corrector method, the solutions of GFSs are calculated and they are more complicated than the classical fractional one. Based on linear feedback control, we investigate a theorem to control the chaotic GFSs with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. We present an example to verify the validity of control theorem. We state and prove a theorem to calculate the analytical formula of controllers that are used to achieve synchronization between two different chaotic GFSs. An example to study the synchronization for systems with orders lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document} is given. We found an agreement between analytical results and numerical simulations.
引用
收藏
相关论文
共 50 条
  • [31] Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks
    Chen, Jiejie
    Zeng, Zhigang
    Jiang, Ping
    NEURAL NETWORKS, 2014, 51 : 1 - 8
  • [32] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    CHINESE PHYSICS B, 2010, 19 (09)
  • [33] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    Chinese Physics B, 2010, (09) : 237 - 242
  • [34] Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown control coefficients
    Xuhuan Wang
    Advances in Difference Equations, 2018
  • [35] Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown control coefficients
    Wang, Xuhuan
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [36] Synchronization of Fractional Stochastic Chaotic Systems via Mittag-Leffler Function
    Sathiyaraj, T.
    Feckan, Michal
    Wang, JinRong
    FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [37] Generalized Synchronization Involving a Linear Combination of Fractional-Order Chaotic Systems
    Sayed, Wafaa S.
    Radwan, Ahmed G.
    Abd-El-Hafiz, Salwa K.
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,
  • [38] Compound Generalized Function Projective Synchronization for Fractional-Order Chaotic Systems
    Yang, Chunde
    Cai, Hao
    Zhou, Ping
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [39] SYNCHRONIZATION OF CHAOTIC FRACTIONAL-ORDER SYSTEMS VIA LINEAR CONTROL
    Odibat, Zaid M.
    Corson, Nathalie
    Aziz-Alaoui, M. A.
    Bertelle, Cyrille
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01): : 81 - 97
  • [40] Modified generalized projective synchronization of fractional-order chaotic Lu systems
    Liu, Jian
    Liu, Shutang
    Yuan, Chunhua
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,