Mittag–Leffler stability, control, and synchronization for chaotic generalized fractional-order systems

被引:0
作者
Tarek M. Abed-Elhameed
Tarek Aboelenen
机构
[1] Assiut University,Department of Mathematics, Faculty of Science
[2] Qassim University,Department of Mathematics, Unaizah College of Sciences and Arts
来源
Advances in Continuous and Discrete Models | / 2022卷
关键词
Chaotic systems; Generalized fractional order; Mittag–Leffler function; Lypunov direct method; Control methods; Synchronization; 26A33; 33E12; 37C75; 37D45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the generalized fractional system (GFS) with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. We present stability analysis of GFS by two methods. First, the stability analysis of that system using the Gronwall–Bellman (G–B) Lemma, the Mittag–Leffler (M–L) function, and the Laplace transform is introduced. Secondly, by the Lyapunov direct method, we study the M–L stability of our system with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. Using the modified predictor–corrector method, the solutions of GFSs are calculated and they are more complicated than the classical fractional one. Based on linear feedback control, we investigate a theorem to control the chaotic GFSs with order lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document}. We present an example to verify the validity of control theorem. We state and prove a theorem to calculate the analytical formula of controllers that are used to achieve synchronization between two different chaotic GFSs. An example to study the synchronization for systems with orders lying in (1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1, 2)$\end{document} is given. We found an agreement between analytical results and numerical simulations.
引用
收藏
相关论文
共 144 条
  • [1] Zhang R.(2015)Stability analysis of a class of fractional order nonlinear systems with order lying in ISA Trans. 56 102-110
  • [2] Tian G.(2009)Fractional electromagnetic equations using fractional forms Int. J. Theor. Phys. 48 3114-3123
  • [3] Yang S.(2015)Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system Chaos Solitons Fractals 75 50-61
  • [4] Cao H.(2014)Response of fractional oscillators with viscoelastic term under random excitation J. Comput. Nonlinear Dyn. 9 1399-1409
  • [5] Baleanu D.(2015)Finite-time stabilizing a fractional-order chaotic financial system with market confidence Nonlinear Dyn. 79 780-787
  • [6] Golmankhaneh A.K.(2014)Application of fractional calculus theory to robust controller design for wind turbine generators IEEE Trans. Energy Convers. 29 2599-2622
  • [7] Golmankhaneh A.K.(2014)A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation SIAM J. Numer. Anal. 52 1413-1423
  • [8] Baleanu M.C.(2000)The fractional-order governing equation of Lévy motion Water Resour. Res. 36 2108-2131
  • [9] Xu B.(2009)A space-time spectral method for the time fractional diffusion equation SIAM J. Numer. Anal. 47 1754-1758
  • [10] Chen D.(2010)Anomalous diffusion modeling by fractal and fractional derivatives Comput. Math. Appl. 59 19-26