High cooperativity coupling to nuclear spins on a circuit quantum electrodynamics architecture

被引:0
|
作者
Victor Rollano
Marina C. de Ory
Christian D. Buch
Marcos Rubín-Osanz
David Zueco
Carlos Sánchez-Azqueta
Alessandro Chiesa
Daniel Granados
Stefano Carretta
Alicia Gomez
Stergios Piligkos
Fernando Luis
机构
[1] Instituto de Nanociencia y Materiales de Aragón (CSIC - UNIZAR),Departamento de Física de la Materia Condensada
[2] Universidad de Zaragoza,Department of Chemistry
[3] Centro de Astrobiología (CSIC - INTA),Departamento de Física Aplicada
[4] University of Copenhagen,undefined
[5] Universidad de Zaragoza,undefined
[6] Università di Parma,undefined
[7] Dipartimento di Scienze Matematiche,undefined
[8] Fisiche e Informatiche,undefined
[9] UdR Parma,undefined
[10] INSTM,undefined
[11] INFN-Sezione di Milano-Bicocca,undefined
[12] gruppo collegato di Parma,undefined
[13] IMDEA Nanociencia,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Nuclear spins are candidates to encode qubits or qudits due to their isolation from magnetic noise and potentially long coherence times. However, their weak coupling to external stimuli makes them hard to integrate into circuit quantum electrodynamics architectures, the leading technology for solid-state quantum processors. Here, we study the coupling of 173Yb(III) nuclear spin states in an [Yb(trensal)] molecule to superconducting cavities. Experiments have been performed on magnetically dilute single crystals placed on the inductors of lumped-element LC superconducting resonators with characteristic frequencies spanning the range of nuclear and electronic spin transitions. We achieve a high cooperative coupling to all electronic and most nuclear [173Yb(trensal)] spin transitions, a necessary ingredient for the implementation of qudit protocols with molecular spins using a hybrid architecture.
引用
收藏
相关论文
共 50 条
  • [1] High cooperativity coupling to nuclear spins on a circuit quantum electrodynamics architecture
    Rollano, Victor
    de Ory, Marina C.
    Buch, Christian D.
    Rubin-Osanz, Marcos
    Zueco, David
    Sanchez-Azqueta, Carlos
    Chiesa, Alessandro
    Granados, Daniel
    Carretta, Stefano
    Gomez, Alicia
    Piligkos, Stergios
    Luis, Fernando
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [2] Robust Strong-Coupling Architecture in Circuit Quantum Electrodynamics
    Upadhyay, Rishabh
    Thomas, George
    Chang, Yu-Cheng
    Golubev, Dmitry S.
    Guthrie, Andrew
    Gubaydullin, Azat
    Peltonen, Joonas T.
    Pekola, Jukka P.
    PHYSICAL REVIEW APPLIED, 2021, 16 (04)
  • [3] Superstrong coupling in circuit quantum electrodynamics
    Roman Kuzmin
    Nitish Mehta
    Nicholas Grabon
    Raymond Mencia
    Vladimir E. Manucharyan
    npj Quantum Information, 5
  • [4] Superstrong coupling in circuit quantum electrodynamics
    Kuzmin, Roman
    Mehta, Nitish
    Grabon, Nicholas
    Mencia, Raymond
    Manucharyan, Vladimir E.
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [5] Circuit quantum electrodynamics in the ultrastrong-coupling regime
    Niemczyk, T.
    Deppe, F.
    Huebl, H.
    Menzel, E. P.
    Hocke, F.
    Schwarz, M. J.
    Garcia-Ripoll, J. J.
    Zueco, D.
    Huemmer, T.
    Solano, E.
    Marx, A.
    Gross, R.
    NATURE PHYSICS, 2010, 6 (10) : 772 - 776
  • [6] Protected ground states in short chains of coupled spins in circuit quantum electrodynamics
    Callison, Adam
    Grosfeld, Eytan
    Ginossar, Eran
    PHYSICAL REVIEW B, 2017, 96 (08)
  • [7] Quantum Simulation of the Ultrastrong-Coupling Dynamics in Circuit Quantum Electrodynamics
    Ballester, D.
    Romero, G.
    Garcia-Ripoll, J. J.
    Deppe, F.
    Solano, E.
    PHYSICAL REVIEW X, 2012, 2 (02):
  • [8] A scanning transmon qubit for strong coupling circuit quantum electrodynamics
    Shanks, W. E.
    Underwood, D. L.
    Houck, A. A.
    NATURE COMMUNICATIONS, 2013, 4
  • [9] A scanning transmon qubit for strong coupling circuit quantum electrodynamics
    W. E. Shanks
    D. L. Underwood
    A. A. Houck
    Nature Communications, 4
  • [10] Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon
    Mi, X.
    Cady, J. V.
    Zajac, D. M.
    Stehlik, J.
    Edge, L. F.
    Petta, J. R.
    APPLIED PHYSICS LETTERS, 2017, 110 (04)