Pseudospectra of linear matrix pencils by block diagonalization

被引:0
作者
P.-F. Lavallée
M. Sadkane
机构
[1] IRISA-INRIA,Département de Mathématiques
[2] Université de Bretagne Occidentale,undefined
来源
Computing | 1998年 / 60卷
关键词
65F15; 65F30; Eigenvalue; pseudospectrum; matrix pencil;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an algorithm that block-diagonalizes regular matrix pencils using well conditioned transformations. This algorithm is used for approximating the pseudospectra of matrix pencils. Several numerical experiments illustrate the behavior of the proposed algorithm.
引用
收藏
页码:133 / 156
页数:23
相关论文
共 17 条
[1]  
Bavely C. A.(1979)An algorithm for computing reducing subspaces by block diagonalization SIAM J. Numer. Anal. 16 359-376
[2]  
Stewart G. W.(1996)Computing the field of values and pseudospectra using the Lanczos method with continuation BIT 36 422-440
[3]  
Braconnier T.(1994)Spectral portrait for non-Hermitian large matrices Computing 53 301-310
[4]  
Higham N. J.(1983)The condition number of equivalence transformations that block diagonalize matrix pencils SIAM J. Numer. Anal. 20 599-610
[5]  
Carpraux J. F.(1987)Computing stable eigendecompositions of matrix pencils Lin. Alg. Appl. 88/89 139-186
[6]  
Erhel J.(1976)Ill-conditioned eigensystems and the computation of the Jordan canonical form SIAM Rev. 18 578-619
[7]  
Sadkane M.(1996)Lapack-style algorithms and software for solving the generalizes sylvester equation and estimating the separation between regular matrix pairs ACM Trans. Math. Software 22 78-103
[8]  
Demmel J.(1997)Computation of pseudospectra by continuation SIAM J. Sci. Comput. 18 565-573
[9]  
Demmel J.(1973)An algorithm for the generalized matrix eigenvalue problem SIAM J. Numer. Anal. 10 241-256
[10]  
Kågström B.(undefined)undefined undefined undefined undefined-undefined