Complex mathematical SIR model for spreading of COVID-19 virus with Mittag-Leffler kernel

被引:0
作者
F. Talay Akyildiz
Fehaid Salem Alshammari
机构
[1] Imam Mohammad ibn Saud Islamic University (IMSIU),Department of Mathematics and Statistics, Faculty of Science
来源
Advances in Difference Equations | / 2021卷
关键词
Coronavirus-19 disease; Complex fractional SIR model; Atangana–Beleanu–Caputo (ABC) derivatives; Fixed-point method; Stability; 34A08; 37N30;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates a new model on coronavirus-19 disease (COVID-19), that is complex fractional SIR epidemic model with a nonstandard nonlinear incidence rate and a recovery, where derivative operator with Mittag-Leffler kernel in the Caputo sense (ABC). The model has two equilibrium points when the basic reproduction number R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0} > 1$\end{document}; a disease-free equilibrium E0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{0}$\end{document} and a disease endemic equilibrium E1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{1}$\end{document}. The disease-free equilibrium stage is locally and globally asymptotically stable when the basic reproduction number R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0} <1$\end{document}, we show that the endemic equilibrium state is locally asymptotically stable if R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0} > 1$\end{document}. We also prove the existence and uniqueness of the solution for the Atangana–Baleanu SIR model by using a fixed-point method. Since the Atangana–Baleanu fractional derivative gives better precise results to the derivative with exponential kernel because of having fractional order, hence, it is a generalized form of the derivative with exponential kernel. The numerical simulations are explored for various values of the fractional order. Finally, the effect of the ABC fractional-order derivative on suspected and infected individuals carefully is examined and compared with the real data.
引用
收藏
相关论文
共 77 条
  • [1] Bonyah E.(2017)A theoretical model for Zika virus transmission PLoS ONE 12 1-26
  • [2] Khan M.A.(2020)A mathematical theoretical study of a particular system of Caputo–Fabrizio fractional differential equations for the Rubella disease model Adv. Differ. Equ. 184 1-19
  • [3] Okosun K.O.(2020)Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy Nat. Med. 26 855-860
  • [4] Baleanu D.(2020)A mathematical model to investigate the transmission of COVID-19 in the Kingdom of Saudi Arabia Comput. Math. Methods Med. 2020 38-49
  • [5] Mohammadi H.(2021)Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: a case study Chaos Solitons Fractals 144 1507-1537
  • [6] Rezapour S.(2018)A new analysis of Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler type kernel Eur. Phys. J. Plus 133 763-769
  • [7] Giordano G.(2020)Fractional order SEIR model with generalized incidence rate AIMS Math. 5 444-462
  • [8] Blanchini F.(2019)A new parameterization for the concentration flux using the fractional calculus to model the dispersion of contaminants in the planetary boundary layer Physica A 518 1856-1880
  • [9] Bruno R.(2021)Analysis of a fractional-order chaotic system in the context of the Caputo fractional derivative via bifurcation and Lyapunov exponents J. King Saud Univ., Sci. 33 1222-1227
  • [10] Colaneri P.(2020)On class of fractional-order chaotic or hyperchaotic systems in the context of the Caputo fractional-order derivative J. Math. 2020 15-35