On Application of Gaussian Functions for Numerical Solution of Optimal Control Problems

被引:0
|
作者
A. V. Chernov
机构
[1] Lobachevsky Nizhny Novgorod State University,
来源
关键词
control parametrization technique; lumped optimal control problem; approximation using Gaussian functions;
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that the linear combinations of shifts and contractions of the Gaussian function can be used for an arbitrarily accurate approximation in the space of continuous functions of one variable on any fixed intervals. On the example of the soft lunar landing problem, a method for the numerical solution of optimal control problems based on this approximation procedure of the control function is described. Within the framework of the same example, the sensitivity of constraint functionals to the specification error of optimal parameters is investigated using three approaches as follows: 1) Pontryagin’s maximum principle (both numerically and theoretically); 2) the control parametrization technique in combination with the method of sliding nodes; 3) the newly proposed method. A comparative analysis is performed that confirms the effectiveness of the third method.
引用
收藏
页码:1026 / 1040
页数:14
相关论文
共 50 条
  • [21] A hybrid functions numerical scheme for fractional optimal control problems: Application to nonanalytic dynamic systems
    Mohammadi, F.
    Moradi, L.
    Baleanu, D.
    Jajarmi, A.
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (21) : 5030 - 5043
  • [22] Numerical solution of optimal control for scaled systems by hybrid functions
    Wang, Xing Tao
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (04): : 849 - 855
  • [23] APPLICATION OF MULTIPLE SHOOTING TO NUMERICAL-SOLUTION OF OPTIMAL CONTROL PROBLEMS WITH BOUNDED STATE VARIABLES
    MAURER, H
    GILLESSEN, W
    COMPUTING, 1975, 15 (02) : 105 - 126
  • [24] AN APPLICATION OF CONJUGATE DUALITY FOR NUMERICAL-SOLUTION OF CONTINUOUS CONVEX OPTIMAL-CONTROL PROBLEMS
    OUTRATA, JV
    KRIZ, OF
    KYBERNETIKA, 1980, 16 (06) : 477 - 497
  • [25] Application of fuzzy systems on the numerical solution of the elliptic PDE-constrained optimal control problems
    Azizi, Masoomeh
    Amirfakhrian, Majid
    Araghi, Mohammad Ali Fariborzi
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2022, 10 (02): : 351 - 371
  • [26] Solution of nonlinear optimal control problems by the interpolating scaling functions
    Foroozandeh, Z.
    Shamsi, M.
    Acta Astronautica, 2012, 72 : 21 - 26
  • [27] Numerical solution of fractional variational and optimal control problems via fractional-order Chelyshkov functions
    Ahmed, A. I.
    Al-Sharif, M. S.
    Salim, M. S.
    Al-Ahmary, T. A.
    AIMS MATHEMATICS, 2022, 7 (09): : 17418 - 17443
  • [28] Numerical solution for a class of fractional optimal control problems using the fractional-order Bernoulli functions
    Valian, Forugh
    Ordokhani, Yadollah
    Vali, Mohammad Ali
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2022, 44 (08) : 1635 - 1648
  • [29] Numerical Solution of Some Types of Fractional Optimal Control Problems
    Sweilam, Nasser Hassan
    Al-Ajami, Tamer Mostafa
    Hoppe, Ronald H. W.
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [30] Numerical solution of optimal control problems for complex power systems
    Kalimoldayev, Maksat N.
    Jenaliyev, Muvasharkhan T.
    Abdildayeva, Asel A.
    Elezhanova, Shynar K.
    ADVANCEMENTS IN MATHEMATICAL SCIENCES (AMS 2015), 2015, 1676