Nuclei of normal rational curves

被引:0
作者
Gmainer J. [1 ]
Havlicek H. [1 ]
机构
[1] Abteilung für Lineare Algebra und Geometrie, Technische Universität, A-1040 Wien
关键词
Explicit Formula; Rational Curve; Characteristic Zero; Rational Curf; Normal Rational Curve;
D O I
10.1007/BF01237480
中图分类号
学科分类号
摘要
A k-nucleus of a normal rational curve in PG(n, F) is the intersection over all k-dimensional osculating subspaces of the curve (k ∈ (-1, 0,…, n-1)). It is well known that for characteristic zero all nuclei are empty. In case of characteristic p > 0 and #F ≥ n the number of non-zero digits in the representation of n + 1 in base p equals the number of distinct nuclei. An explicit formula for the dimensions of k-nuclei is given for #F ≥ k + 1. © Birkhäuser Verlag, 2000.
引用
收藏
页码:117 / 130
页数:13
相关论文
共 16 条
[1]  
Brauner H., Geometrie Projektiver Räume II, (1976)
[2]  
Brouwer A.E., Wilbrink H.A., Block designs, Handbook of Incidence Geometry, pp. 349-382, (1995)
[3]  
Glynn D.G., The non-classical 10-arc of PG(4,9), Discrete Math., 59, pp. 43-51, (1986)
[4]  
Hasse H., Noch Tine begründung der theorie der höheren differentialquotienten in einem algebraischen funktionenkörper einer unbestimmten, J. Reine Angew. Math., 177, pp. 215-237, (1937)
[5]  
Havlicek H., Normisomorphismen und normkurven enilichdimensionaler projektiver desargues-Räume, Monatsh. Math., 95, pp. 203-218, (1983)
[6]  
Havlicek H., Die automorphen kollineationen nicht entarteter normkurven, Geom. Dedicata, 16, pp. 85-91, (1984)
[7]  
Havlicek H., Applications of results on generalized polynomial identities in desarguesian projective spaces, Rings and Geometry, pp. 39-77, (1985)
[8]  
Herzer A., Die schmieghyperebenen an die veronese-Mannigfaltigkeit bei beliebiger charakteristik, J. Geometry, 18, pp. 140-154, (1982)
[9]  
Hexel E., Sachs H., Counting residues modulo a prime in Pascal's triangle, Indian J. Math., 20, pp. 91-105, (1978)
[10]  
Hirschfeld J.W.P., Projective Geometry over Finite Fields, (1998)