Approximation by Kantorovich Type q-Bernstein-Stancu Operators

被引:0
作者
M. Mursaleen
Khursheed J. Ansari
Asif Khan
机构
[1] Aligarh Muslim University,Department of Mathematics
来源
Complex Analysis and Operator Theory | 2017年 / 11卷
关键词
-Bernstein-Stancu operators; Rate of convergence; Modulus of continuity; Voronovskaja type theorem; 41A10; 41A25; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a Kantorovich type generalization of q-Bernstein-Stancu operators. We study the convergence of the introduced operators and also obtain the rate of convergence by these operators in terms of the modulus of continuity. Further, we study local approximation property and Voronovskaja type theorem for the said operators. We show comparisons and some illustrative graphics for the convergence of operators to a certain function.
引用
收藏
页码:85 / 107
页数:22
相关论文
共 28 条
  • [1] Agarwal PN(2013)On Appl. Math. Comput. 219 7754-7764
  • [2] Gupta V(2010)-analogue of Bernstein-Schurer-Stancu operators Appl. Math. Comput. 216 890-901
  • [3] Kumar AS(2008)Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables Appl. Math. Comput. 197 172-178
  • [4] Gadjiev AD(2008)Some approximation properties of Math. Methods Appl. Sci. 31 1946-1955
  • [5] Ghorbanalizadeh AM(1953)-Durrmeyer operators Dokl. Akad. Nauk SSSR (N.S.) 90 961-964
  • [6] Gupta V(2013)The rate of convergence of Filomat 27 721-730
  • [7] Gupta V(2014)-Durrmeyer operators for Appl. Math. Comput. 242 931-944
  • [8] Heping W(2013)On convergence of linear operators in the space of continuous functions (Russian) Appl. Math. Comput. 219 6911-6918
  • [9] Korovkin PP(2013)Approximation theorems for Bull. Malaysian Math. Sci.Soc.(2) 36 683-690
  • [10] Mahmudov NI(2015) -Bernstein-Kantorovich operators Numer. Funct. Anal. Optim. 36 1178-1197