Invariant solutions for gradient Ricci almost solitons

被引:0
作者
Benedito Leandro
Romildo Pina
Tatiana Pires Fleury Bezerra
机构
[1] Universidade Federal de Goiás,IME
[2] IFG -Instituto Federal de Educação,undefined
[3] Ciência e Tecnologia de Goiás,undefined
来源
São Paulo Journal of Mathematical Sciences | 2020年 / 14卷
关键词
Semi-Riemannian metric; Gradient Ricci solitons; Warped product; 53C21; 53C50; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we provide an ansatz that reduces a pseudo-Riemannian gradient Ricci almost soliton (PDE) into an integrable system of ODE. First, considering a warped structure with conformally flat base invariant under the action of an (n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)$$\end{document}-dimensional translation group and semi-Riemannian Einstein fiber, we provide the ODE system which characterizes all such solitons. Then, we also provide a classification for a conformally flat pseudo-Riemannian gradient Ricci almost soliton invariant by the actions of a translation group or a pseudo-orthogonal group. Finally, we conclude with some explicit examples.
引用
收藏
页码:123 / 138
页数:15
相关论文
共 35 条
[1]  
Barros A(2012)Rigidity of gradient Ricci almost solitons Ill. J. Math. 56 1267-1279
[2]  
Batista R(2013)A note on rigidity of the almost Ricci soliton Arch. Math. (Basel) 100 481-490
[3]  
Ribeiro E(2011)Ricci solitons on Lorentzian manifolds with large isometry groups Bull. Lond. Math. Soc. 43 1219-1227
[4]  
Barros A(2012)Three dimension Lorentzian homogeneous Ricci solitons Isr. J. Math. 188 385-403
[5]  
Gomes JN(2013)Locally conformally flat Lorentzian gradient Ricci solitons J. Geom. Anal. 23 1196-1212
[6]  
Ribeiro E(2016)Half conformally flat gradient Ricci almost solitons Proc. R. Soc. A 472 20160043-546
[7]  
Batat W(2017)Homogeneous Ricci almost solitons Isr. J. Math. 220 531-756
[8]  
Brozos-Vázquez M(2012)Generalized quasi-Einstein manifolds with harmonic Weyl tensor Math. Z. 271 751-370
[9]  
García-Río E(2017)The Ricci–Bourguignon flow Pac. J. Math. 287 337-32
[10]  
Gavino-Fernández S(2019)Gradient Ricci almost soliton warped product J. Geom. Phys. 143 22-322