On Naturally Graded Lie and Leibniz Superalgebras

被引:0
作者
L. M. Camacho
R. M. Navarro
J. M. Sánchez
机构
[1] Universidad de Sevilla,Dpto. Matemática Aplicada I
[2] Universidad de Extremadura,Dpto. de Matemáticas
[3] Universidad de Cádiz,Dpto. de Matemáticas
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2020年 / 43卷
关键词
Lie (super)algebras; Cohomology; Deformation; Leibniz (super)algebras; Naturally graded; 17A32; 17B30; 17B70; 17A70;
D O I
暂无
中图分类号
学科分类号
摘要
In general, the study of gradations has always represented a cornerstone in the study of non-associative algebras. In particular, natural gradation can be considered to be the first and most relevant gradation of nilpotent Leibniz (resp. Lie) algebras. In fact, many families of relevant solvable Leibniz (resp. Lie) algebras have been obtained by extensions of naturally graded algebras, i.e., solvable algebras with a well-structured nilradical. Thus, the aim of this work is introducing the concept of natural gradation for Lie and Leibniz superalgebras. Moreover, after having defined naturally graded Lie and Leibniz superalgebras, we characterize natural gradations on a very important class of each of them, that is, those with maximal supernilindex.
引用
收藏
页码:3411 / 3435
页数:24
相关论文
共 62 条
[1]  
Adashev JK(2017)Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras J. Algebra 479 461-486
[2]  
Camacho LM(2005)On nilpotent and simple Leibniz algebras Commun. Algebra 33 159-172
[3]  
Omirov BA(2009)On the classification of complex Leibniz superalgebras with characteristic sequence J. Algebra Appl. 8 461-475
[4]  
Albeverio S(2005) and nilindex Commun. Algebra 33 1575-1585
[5]  
Ayupov ShA(2011)Varieties of nilpotent complex Leibniz algebras of dimension less than five J. Geom. Phys. 61 2168-2186
[6]  
Omirov BA(2001)Classification of Lie algebras with naturally graded quasi-filiform nilradicals Sib. Math. J. 42 15-24
[7]  
Albeverio S(2007)On some classes of nilpotent Leibniz algebras J. Geom. Phys. 57 1391-1403
[8]  
Omirov BA(1999)Some deformations of nilpotent Lie superalgebras J. Algebra 214 729-739
[9]  
Khudoyberdiyev AK(2005)Classification of orbit closures of J. Lie Theory 15 379-391
[10]  
Albeverio S(2012)-dimensional complex Lie algebras Forum Math. 24 809-826