Optimality Conditions for Nondifferentiable Minimax Programs and Vector Optimization Problems

被引:0
作者
Duong Thi Kim Huyen
Do Sang Kim
Nguyen Dong Yen
机构
[1] Phenikaa University,ORLab, Faculty of Computer Science
[2] Pukyong National University,Department of Applied Mathematics
[3] Vietnam Academy of Science and Technology,Institute of Mathematics
来源
Journal of Optimization Theory and Applications | 2024年 / 200卷
关键词
Nondifferentiable minimax program in an Asplund space; Optimality condition; Limiting subdifferential; Sum rule; Lower regular function; Monotonicity; Vector optimization; 26B25; 49J40; 49J52; 49J53;
D O I
暂无
中图分类号
学科分类号
摘要
First-order sufficient optimality conditions in terms of Lagrangian functions and Lagrange multipliers for nondifferentiable minimax programs and vector optimization problems in an Asplund space setting are obtained in this paper. Two illustrative examples are given. Our results implement the first-order necessary optimality conditions of Chuong and Kim (Ann Oper Res 251:73–87, 2017).
引用
收藏
页码:703 / 723
页数:20
相关论文
共 35 条
[1]  
Bao TQ(2017)Necessary optimality conditions for minimax programming problems with mathematical constraints Optimization 66 1755-1776
[2]  
Gupta P(2017)Nondifferentiable minimax programming problems with applications Ann. Oper. Res. 251 73-87
[3]  
Khanh PQ(2014)The penalty functions method and multiplier rules based on the Mordukhovich subdifferential Set-Valued Var. Anal. 22 299-312
[4]  
Chuong TD(2015)Optimality conditions and stability analysis via the Mordukhovich subdifferential Numer. Funct. Anal. Optim. 36 364-386
[5]  
Kim DS(2022)Minimax programming as a tool for studying robust multi-objective optimization problems Ann. Oper. Res. 319 1589-1606
[6]  
Hang NTV(2018)Exact second-order cone programming relaxations for some nonconvex minimax quadratic optimization problems SIAM J. Optim. 28 760-787
[7]  
Hang NTV(2005)Variable programming: a generalized minimax problem. Part I: Models and theory Comput. Optim. Appl. 30 229-261
[8]  
Yen ND(2005)Variable programming: a generalized minimax problem. Part II: Algorithms Comput. Optim. Appl. 30 263-295
[9]  
Hong Z(2006)Parametric duality on minimax programming involving generalized convexity in complex space J. Math. Anal. Appl. 323 1104-1115
[10]  
Bae KD(1999)Necessary and sufficient conditions for minimax fractional programming J. Math. Anal. Appl. 230 311-328