On geometric-arithmetic index

被引:0
|
作者
Yan Yuan
Bo Zhou
Nenad Trinajstić
机构
[1] South China Normal University,Department of Mathematics
[2] The Rugjer Bošković Institute,undefined
来源
Journal of Mathematical Chemistry | 2010年 / 47卷
关键词
Geometric-arithmetic index; Molecular graphs; Molecular trees; Degree (of vertex);
D O I
暂无
中图分类号
学科分类号
摘要
The geometric-arithmetic (GA) index is a newly proposed graph invariant in mathematical chemistry. We give the lower and upper bounds for GA index of molecular graphs using the numbers of vertices and edges. We also determine the n-vertex molecular trees with the minimum, the second and the third minimum, as well as the second and the third maximum GA indices.
引用
收藏
页码:833 / 841
页数:8
相关论文
共 50 条
  • [41] On the spread of the geometric-arithmetic matrix of graphs
    Rather, Bilal A.
    Aouchiche, M.
    Pirzada, S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (02) : 146 - 153
  • [42] ESTIMATING THE SECOND AND THIRD GEOMETRIC-ARITHMETIC INDICES
    Gutman, Ivan
    Furtula, Boris
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (01): : 69 - 76
  • [43] Unicyclic Graphs With Maximum Geometric-Arithmetic Indices
    Husin, Nor Hafizah Md
    Du, Zhibin
    Hasni, Roslan
    ARS COMBINATORIA, 2020, 148 : 89 - 107
  • [44] On Eigenvalues and Energy of Geometric-Arithmetic Matrix of Graphs
    Pirzada, S.
    Rather, Bilal A.
    Aouchiche, M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (03)
  • [45] Correcting a paper on the Randic and geometric-arithmetic indices
    Mansour, Toufik
    Rostami, Mohammad Ali
    Elumalai, Suresh
    Xavier, Britto Antony
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (01) : 27 - 32
  • [46] THE SECOND AND THIRD GEOMETRIC-ARITHMETIC INDICES OF UNICYCLIC GRAPHS
    Liu, Ping
    Liu, Bolian
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (04): : 555 - 562
  • [47] Relation between second and third geometric-arithmetic indices of trees
    Furtula, Boris
    Gutman, Ivan
    JOURNAL OF CHEMOMETRICS, 2011, 25 (02) : 87 - 91
  • [48] The maximal geometric-arithmetic energy of trees with at most two branched vertices
    Shao, Yanling
    Gao, Yubin
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
  • [49] The minimal chemical tree for the difference between geometric-arithmetic and Randić indices
    Mondal, Sourav
    Das, Kinkar Chandra
    Huh, Da-yeon
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2024, 124 (01)
  • [50] On a relation between the atom-bond connectivity and the first geometric-arithmetic indices
    Zhong, Lingping
    Cui, Qing
    DISCRETE APPLIED MATHEMATICS, 2015, 185 : 249 - 253