Fixed point theorems via Generalized WF-Contractions with applications

被引:0
作者
Rodríguez-López R. [1 ]
Tiwari R. [2 ]
机构
[1] Instituto de Matemáticas, Departamento de Estatística, Análise Matemática e Optimización, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela
[2] Department of Mathematics, Government V. Y. T. Post-Graduate Autonomous College, Durg, Chhattisgarh
关键词
Fixed points; Generalized WF-Contractions; WF-Contractions;
D O I
10.1007/s40324-021-00261-2
中图分类号
学科分类号
摘要
The aim of this paper is to introduce a new class of mixed contractions which allow to revise and generalize some results obtained in [6] by R. Gubran, W. M. Alfaqih and M. Imdad. We also provide an example corresponding to this class of mappings and show how the new fixed point result relates to the above-mentioned result in [6]. Further, we present an application to the solvability of a two-point boundary value problem for second order differential equations. © 2021, The Author(s).
引用
收藏
页码:321 / 332
页数:11
相关论文
共 17 条
[1]  
Alber Y.I., Guerre-Delabriere S., Principle of weakly contractive maps in Hilbert spaces, New Results in Operator Theory and Its Applications, pp. 7-22, (1997)
[2]  
Ali J., Imdad M., An implicit function implies several contraction conditions, Sarajevo J. Math., 4, pp. 269-285, (2008)
[3]  
Altun I., Turkoglu D., Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwanese J. Math., 13, pp. 1291-1304, (2009)
[4]  
Argoubi H., Samet B., Vetro C., Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 8, pp. 1082-1094, (2015)
[5]  
A generalization of contraction principle in metric spaces, Fixed Point Theory Appl, (2008)
[6]  
Gubran R., Alfaqih W.M., Imdad M., Fixed point theorems via WF-contractions, Kragujevac J. Math., 45, 3, pp. 353-360, (2021)
[7]  
Imdad M., Ali J., A general fixed point theorem in fuzzy metric spaces via an implicit function, J. Appl. Math. Inform., 26, pp. 591-603, (2008)
[8]  
Imdad M., Gubran R., Ahmadullah M., Using an implicit function to prove common fixed point theorems, J. Adv. Math. Stud., 11, 3, pp. 481-491, (2018)
[9]  
Nieto J.J., Rodriguez-Lopez R., Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22, 3, pp. 223-239, (2005)
[10]  
Nieto J.J., Rodriguez-Lopez R., Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Mathematica Sinica, English Series, 23, 12, pp. 2205-2212, (2007)