Invertible Contractions and Asymptotically Stable ODE’S that are not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}^{1}$$\end{document}-Linearizable

被引:0
作者
Hildebrando M. Rodrigues
J. Solà-Morales
机构
[1] Universidade de São Paulo,Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação
[2] Universitat Politècnica de Catalunya,Departament de Matemàtica Aplicada 1
关键词
linearization; conjugacy; contraction; PRIMARY: 37L10; PRIMARY: 34G20; SECONDARY: 35B40; SECONDARY: 37C15;
D O I
10.1007/s10884-006-9050-1
中图分类号
学科分类号
摘要
We present an example of a contraction diffeomorphism in infinite dimensions that is not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}^{1}$$\end{document}-linearizable, and we construct a regular ordinary differential equation in a Hilbert space whose time-one map is that diffeomorphism. With this we have an example of an asymptotically stable ODE that is not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}^{1}$$\end{document}-conjugate to its linear part.
引用
收藏
页码:961 / 974
页数:13
相关论文
共 19 条
  • [1] Abbaci B.(2004)On a theorem of Philip Hartman C. R. Math. Acad. Sci. Paris 339 781-786
  • [2] Bialy M.S.(2001)Local contractions of Banach spaces and spectral gap conditions J. Funct. Anal. 182 108-150
  • [3] Cabré X.(2003)The parametrization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces Indiana Univ. Math. J. 52 283-328
  • [4] Fontich E.(2003)Differentiability of the Hartman-Grobman Theorem DiscreteContin. Dyn. Syst. 9 979-984
  • [5] de la Llave R.(1960)On local homeomorphisms of euclidean spaces Boletin de la Sociedad Matematica Mexicana 5 220-241
  • [6] Guysinsky M.(2002)Extension of Floquet’s theory to nonlinear periodic differential systems and embedding diffeomorphisms in differential flows Amer. J. Math. 124 107-127
  • [7] Hasselblatt B.(1974)Vector fields generate few diffeomorphisms Bull. Amer. Math. Soc. 80 503-505
  • [8] Rayskin V.(2004)Linearization of class J. Diff. Equat. 201 351-382
  • [9] Hartman P.(2004) for contractions on Banach spaces J. Dyn. Diff. Equat. 16 767-793
  • [10] Li W.(2005)Smooth linearization for a saddle on Banach spaces C. R. Math. Acad. Sci. Paris 340 847-850