Lyapunov functions for linear nonautonomous dynamical equations on time scales

被引:0
作者
Peter E Kloeden
Alexandra Zmorzynska
机构
[1] Johann Wolfgang Goethe Universität,Institut für Mathematik
[2] Technische Universität Berlin,Institut für Mathematik
来源
Advances in Difference Equations | / 2006卷
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Analysis; Functional Equation;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of a Lyapunov function is established following a method of Yoshizawa for the uniform exponential asymptotic stability of the zero solution of a nonautonomous linear dynamical equation on a time scale with uniformly bounded graininess.
引用
收藏
相关论文
共 11 条
[1]  
Agarwal RP(2002)Dynamic equations on time scales: a survey Journal of Computational and Applied Mathematics 141 1-26
[2]  
Bohner M(1990)Analysis on measure chains—a unified approach to continuous and discrete calculus Results in Mathematics 18 18-56
[3]  
O'Regan D(1999)Special functions, Laplace and Fourier transform on measure chains Dynamic Systems and Applications 8 471-488
[4]  
Peterson A(1994)The effect of time granularity on the asymptotic stability of dynamical systems Automation and Remote Control 55 1293-1298 (1995)
[5]  
Hilger S(2002)A spectral characterisation of exponential stability for linear time-invariant systems on time scales Discrete and Continuous Dynamical Systems 9 255-265
[6]  
Hilger S(undefined)undefined undefined undefined undefined-undefined
[7]  
Kloeden PE(undefined)undefined undefined undefined undefined-undefined
[8]  
Khilger S(undefined)undefined undefined undefined undefined-undefined
[9]  
Pötzsche C(undefined)undefined undefined undefined undefined-undefined
[10]  
Siegmund S(undefined)undefined undefined undefined undefined-undefined