A new extension of the (H.2) supercongruence of Van Hamme for primes p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3\pmod {4}$$\end{document}

被引:0
作者
Victor J. W. Guo
机构
[1] Huaiyin Normal University,School of Mathematics and Statistics
关键词
Cyclotomic polynomial; -Congruence; Supercongruence; Andrews’ transformation; Watson’s transformation; 33D15; 11A07; 11B65;
D O I
10.1007/s11139-020-00369-5
中图分类号
学科分类号
摘要
Using Andrews’ multiseries generalization of Watson’s 8ϕ7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_8\phi _7$$\end{document} transformation, we give a new extension of the (H.2) supercongruence of Van Hamme for primes p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3\pmod {4}$$\end{document}, as well as its q-analogue. Meanwhile, applying the method of ‘creative microscoping’, recently introduced by the author and Zudilin, we establish some further q-supercongruences modulo Φn(q)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _n(q)^3$$\end{document}, where Φn(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _n(q)$$\end{document} denotes the nth cyclotomic polynomial in q.
引用
收藏
页码:1387 / 1398
页数:11
相关论文
共 45 条
[1]  
Gorodetsky O(2019)-Congruences, with applications to supercongruences and the cyclic sieving phenomenon Int. J. Number Theory 15 1919-1968
[2]  
Guillera J(2018)WZ pairs and J. Difference Equ. Appl. 24 1871-1879
[3]  
Guo VJW(2018)-analogues of Ramanujan series for J. Math. Anal. Appl. 458 590-600
[4]  
Guo VJW(2019)A Results Math. 74 Art. 131-1036
[5]  
Guo VJW(2020)-analogue of a Ramanujan-type supercongruence involving central binomial coefficients Electron. Res. Arch. 28 1031-326
[6]  
Guo VJW(2020)Common Adv. Appl. Math. 116 Art. 102016-358
[7]  
Guo VJW(2020)-analogues of some different supercongruences Adv. Appl. Math. 120 Art. 102078-646
[8]  
Guo VJW(2020)A family of J. Math. Anal. Appl. 487 Art. 124022-451
[9]  
Guo VJW(2020)-congruences modulo the square of a cyclotomic polynomial Results Math. 75 Art. 155-622
[10]  
Schlosser MJ(2020)Proof of a generalization of the (B.2) supercongruence of Van Hamme through a Constr. Approx. 171 309-215