Vanishing and Artinianness of Graded Generalized Local Cohomology

被引:0
作者
A. Azari
A. Khojali
N. Zamani
机构
[1] University of Mohaghegh Ardabili,
来源
Ukrainian Mathematical Journal | 2021年 / 72卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let R = ⊕j≥0Rj be a homogeneous Noetherian ring with semilocal base ring R0. Let R+ = ⊕j≥1Rj be the irrelevant ideal of R. For two finitely generated graded R-modules M and N, we investigate several results on the properties of vanishing, Artiniannes, and tameness of the graded R-modules HR+iMN.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {H}_{R+}^i\left(M,N\right). $$\end{document}
引用
收藏
页码:1513 / 1521
页数:8
相关论文
共 15 条
[1]  
Bijan-Zadeh MH(1980)A common generalization of local cohomology theories Glasgow Math. J. 21 173-181
[2]  
Brodmann M(2002)Cohomological patterns of coherent sheaves over projective schemes J. Pure Appl. Algebra 172 165-182
[3]  
Hellus M(2005)Some finite properties of generalized local cohomology modules East-West J. Math. 7 107-115
[4]  
Cuong NT(2011)Generalized local cohomology modules and homological Gorenstein dimension Comm. Algebra 39 2051-2067
[5]  
Hoang NV(1971)Artinian modules and Hilbert polynomials Quart. J. Math. 24 47-57
[6]  
Divani-Aazar K(2009)Matlis reflexive and generalized local cohomology modules Czechoslovak Math. J. 59 1095-1102
[7]  
Hajikarimi A(1990)On asymptotic stability for sets of prime ideals connected with the powers of an ideal Math. Proc. Cambridge Philos. Soc. 107 267-271
[8]  
Kirby D(1978)On the generalized local cohomology and its duality J. Math. Kyoto Univ. 18 71-85
[9]  
Mafi A(2003)On the homogeneous pieces of graded generalized local cohomology modules Colloq. Math. 97 181-188
[10]  
Melkerson L(2006)On graded generalized local cohomology Arch. Math. (Basel) 86 321-330