Boundedness of commutators on Herz spaces with variable exponent

被引:131
作者
Izuki M. [1 ]
机构
[1] Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Kita 10 Nishi 8, Kita-ku
关键词
BMO; Commutator; Herz spaces with variable exponent;
D O I
10.1007/s12215-010-0015-1
中图分类号
学科分类号
摘要
Our aim in the present paper is to prove the boundedness of vector-valued commutators on Herz spaces with variable exponent. In order to obtain the result, we clarify a relation between variable exponent and BMO norms. © 2010 Springer-Verlag Italia.
引用
收藏
页码:199 / 213
页数:14
相关论文
共 14 条
[1]  
Coifman R., Rochberg R., Weiss G., Factorization theorems for Hardy spaces in several variables, Ann. Math., 103, 2, pp. 611-635, (1976)
[2]  
Cruz-Uribe D., Fiorenza A., Martell J.M., Perez C., The boundedness of classical operators on variable L <sup>p</sup> spaces, Ann. Acad. Sci. Fenn. Math., 31, pp. 239-264, (2006)
[3]  
Cruz-Uribe D., Fiorenza A., Neugebauer C.J., The maximal function on variable L <sup>p</sup>spaces, Ann. Acad. Sci. Fenn.Math., 28, pp. 223-238, (2003)
[4]  
Diening L., Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 129, pp. 657-700, (2005)
[5]  
Izuki M., Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system, East J. Approx., 15, pp. 87-109, (2009)
[6]  
Izuki M., Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, 36, (2010)
[7]  
Jiang Y., Tang L., Yang D., Continuity of commutators on weighted Herz-type spaces, Kyushu J. Math., 53, pp. 245-263, (1999)
[8]  
Karlovich A.Y., Lerner A.K., Commutators of singular integrals on generalized L <sup>p</sup>spaces with variable exponent, Publ. Mat., 49, pp. 111-125, (2005)
[9]  
Kovacik O., Rakosnik J., On spaces L <sup>p(x)</sup> and W <sup>k,p(x)</sup> , Czechoslovak Math., 41, 116, pp. 592-618, (1991)
[10]  
Lu S., Yang D., The continuity of commutators on Herz-type spaces, Michigan Math. J., 44, pp. 255-281, (1997)