Random Matrices: the Distribution of the Smallest Singular Values
被引:0
|
作者:
Terence Tao
论文数: 0引用数: 0
h-index: 0
机构:UCLA,Department of Mathematics
Terence Tao
Van Vu
论文数: 0引用数: 0
h-index: 0
机构:UCLA,Department of Mathematics
Van Vu
机构:
[1] UCLA,Department of Mathematics
[2] Rutgers University,Department of Mathematics
来源:
Geometric and Functional Analysis
|
2010年
/
20卷
关键词:
Random matrices;
condition number;
least singular value;
distribution;
60B20;
15B52;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let ξ be a real-valued random variable of mean zero and variance 1. Let Mn(ξ) denote the n × n random matrix whose entries are iid copies of ξ and σn(Mn(ξ)) denote the least singular value of Mn(ξ). The quantity σn(Mn(ξ))2 is thus the least eigenvalue of the Wishart matrix \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M_nM_n^\ast}$$\end{document}.