ψF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi F}$$\end{document}-Contractions: Not Necessarily Nonexpansive Picard Operators

被引:0
作者
Nicolae-Adrian Secelean
Dariusz Wardowski
机构
[1] Lucian Blaga University of Sibiu,Department of Mathematics and Computer Science
[2] University of Łódź,Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science
关键词
-contraction; -contraction; nonexpansive; expansive; fixed point; Picard operator; Volterra integral equation; Primary 47H09; Secondary 47H10; 45D05;
D O I
10.1007/s00025-016-0570-7
中图分类号
学科分类号
摘要
The aim of this paper is to extend the result of Wardowski (Fixed Point Theory Appl 2012:94, 2012) by introducing a new class of Picard operators which strictly includes the family of F-contractions. For such operators some fixed point theorems are proved. It is showed that there exist Picard self-mappings on a complete metric space that are neither nonexpansive nor expansive.
引用
收藏
页码:415 / 431
页数:16
相关论文
共 30 条
  • [1] Berinde V.(2003)On the approximation of fixed point of weak contraction mappings Carpath. J. Math. 19 7-22
  • [2] Collaco P.(1997)A complete comparison of 25 contraction conditions Nonlinear Anal. 30 471-476
  • [3] Silva J.C.(2014)Fixed point results for Filomat 28 715-722
  • [4] Cosentino M.(1962)-contractive mappings of Hardy–Rogers-type J. Lond. Math. Soc. 37 74-79
  • [5] Vetro P.(2014)On fixed and periodic points under contractive mappings Taiwanese Journal of Mathematics 18 1879-1895
  • [6] Edelstein M.(2011)SUZUKI-WARDOWSKI TYPE FIXED POINT THEOREMS FOR $\alpha$-GF-CONTRACTIONS Nonlinear Anal. 74 768-774
  • [7] Hussain N.(2015)Equivalent conditions for generalized contractions on (ordered) metric spaces Fixed Point Theory Appl. 2015 22-68
  • [8] Salimi Salimi P.(1975)Fixed points of dynamic processes of set-valued Dissert. Math. 127 1-1151
  • [9] Jachymski J.(2014)-contractions and application to functional equations Filomat 28 1143-1020
  • [10] Klim D.(2014)Integrable solutions of functional equations RACSAM 108 1005-290