Quantum otto machine in Lipkin-Meshkov-Glick model with magnetic field and a symmetric cross interaction

被引:2
作者
Abd-Rabbou, M. Y. [1 ]
Khalil, E. M. [1 ,2 ]
Al-Awfi, Saud [3 ]
机构
[1] Al Azhar Univ, Fac Sci, Math Dept, Nasr City 11884, Cairo, Egypt
[2] Taif Univ, Coll Sci, Dept Math, POB 11099, Taif 21944, Saudi Arabia
[3] Taibah Univ, Fac Sci, Dept Phys, Medina, Saudi Arabia
关键词
Lipkin-Meshkov-Glick model; Otto machine; Quantum refrigerator; Thermal equilibrium; BODY APPROXIMATION METHODS; SOLVABLE MODEL; HEAT ENGINES; VALIDITY; CARNOT;
D O I
10.1007/s11082-024-06444-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study investigates the quantum heat correlations associated with the quantum Otto machine, considering the discrete sides of the Lipkin-Meshkov-Glick model as the working medium in the presence of a magnetic field and a symmetric cross interaction. The eigenenergy and occupation probabilities of two-sided and three-sided spin interactions are determined at thermal equilibrium. The results reveal symmetrical heat correlations around the coupling of the symmetric cross interaction, regardless of whether the working medium adopts anisotropic XY, Ising model, or mixed ferromagnetism. The work done by two or three sides of the mixed ferromagnetic working substance exhibits symmetry but with different maximum bounds. Furthermore, the efficiency of the two-sided mixed ferromagnetism model improves as the exchange parameter increases, while the maximum efficiency of the anisotropic XY model is lower compared to the efficiency of the Ising model and mixed ferromagnetism. It is also highlighted that a quantum heat engine or refrigerator can be generated by controlling the system's anisotropy parameter using a three-sided spin interaction.
引用
收藏
页数:15
相关论文
共 51 条
[41]   Delocalization properties at isolated avoided crossings in Lipkin-Meshkov-Glick type Hamiltonian models [J].
Romera, Elvira ;
Castanos, Octavio ;
Calixto, Manuel ;
Perez-Bernal, Francisco .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
[42]   Wigner Entropy Production Rate [J].
Santos, Jader P. ;
Landi, Gabriel T. ;
Paternostro, Mauro .
PHYSICAL REVIEW LETTERS, 2017, 118 (22)
[43]   Multi-level quantum diesel engine of non-interacting fermions in a one-dimensional box [J].
Singh, Satnam ;
Rebari, Shishram .
EUROPEAN PHYSICAL JOURNAL B, 2020, 93 (08)
[44]   Unified trade-off optimization of quantum harmonic Otto engine and refrigerator [J].
Singh, Varinder ;
Singh, Satnam ;
Abah, Obinna ;
Mustecaplioglu, Ozgur E. .
PHYSICAL REVIEW E, 2022, 106 (02)
[45]   Magnon-driven quantum-dot heat engine [J].
Sothmann, Bjoern ;
Buettiker, Markus .
EPL, 2012, 99 (02)
[46]   Quantum Heat Machines Equivalence, Work Extraction beyond Markovianity, and Strong Coupling via Heat Exchangers [J].
Uzdin, Raam ;
Levy, Amikam ;
Kosloff, Ronnie .
ENTROPY, 2016, 18 (04)
[47]   Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures [J].
Uzdin, Raam ;
Levy, Amikam ;
Kosloff, Ronnie .
PHYSICAL REVIEW X, 2015, 5 (03)
[48]   Universal features in the efficiency at maximal work of hot quantum Otto engines [J].
Uzdin, Raam ;
Kosloff, Ronnie .
EPL, 2014, 108 (04)
[49]   Exact solution for the Lindbladian dynamics for the open XX spin chain with boundary dissipation [J].
Yamanaka, Kohei ;
Sasamoto, Tomohiro .
SCIPOST PHYSICS, 2023, 14 (05)
[50]   Exploring quantum correlations of two-qubit Heisenberg chain model influenced by magnetic dipole-dipole, magnetic field, and a symmetric cross interaction [J].
Youssef, M. ;
Ali, S. I. ;
Abd-Rabbou, M. Y. ;
Obada, A. -S. F. .
QUANTUM INFORMATION PROCESSING, 2023, 22 (06)