Periodic solutions of singular second order equations at resonance

被引:0
作者
Yin Yin Wu
Ding Bian Qian
机构
[1] Soochow University,School of Mathematical Sciences
[2] Wuxi Institute of Technology,Department of Fondamental Courses
[3] Soochow University,School of Mathematical Sciences
来源
Acta Mathematica Sinica, English Series | 2015年 / 31卷
关键词
Second order equations; singularity; periodic solutions; resonance; unbounded perturbations; 34C25; 34B15; 34B16; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of positive periodic solutions for singular second order equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'' + \tfrac{{n^2 }} {4}x + h(x) = p(t)$$\end{document}, where h has a singularity at the origin and n is a positive integer. We give an explicit condition to ensure the existence of positive periodic solutions when h is an unbounded perturbation at infinity by using qualitative analysis and topological degree theory.
引用
收藏
页码:1599 / 1610
页数:11
相关论文
共 46 条
[1]  
Alonso J.(1998)Roots of unity and unbounded motions of an asymmetric oscillator J. Differential Equations 143 201-220
[2]  
Ortega R.(2002)Periodic solutions of forced isochronous osillators at resonance Discret. Cont. Dynam. Syst. 8 907-930
[3]  
Bonheure D.(1992)Continuation theorems for periodic perturbations of autonomous systems Trans. Amer. Math. Soc. 329 41-72
[4]  
Fabry C.(2008)Rotation numbers and Lyapunov stability of elliptic periodic solutions Discret. Cont. Dynam. Syst. 21 1071-1094
[5]  
Smets D.(1993)Infinitely many J. Differential Equations 103 260-277
[6]  
Capietto A.(1992)-periodic solutions for a problem arising in nonlinear elasticity Proc. Roy. Soc. Edinburgh A 120 231-243
[7]  
Mawhin J.(1991)-periodic solutions for some second order differential equations with singularities Nonlinear Anal. 17 635-653
[8]  
Zanolin F.(1993)Time-Maps for the solvbility of periodically perturbed nonlinear Duffing equations SIAM J. Math. Anal. 24 1294-1311
[9]  
Chu J.(2012)Subharmonic solutions for some second order differential equations with singularities Proc. Roy. Soc. Edinburgh A 142 1263-1277
[10]  
Zhang M.(2008)A Landesman–Lazer type condition for asymptotically linear second order equations with a singularity J. Differential Equations 244 3235-3264