Facially symmetric spaces and predual ones of hermitian part of von Neumann algebras

被引:1
作者
Ibragimov M.M. [1 ]
Kudaibergenov K.K. [1 ]
Seipullaev Z.K. [2 ]
机构
[1] Karakalpak State University named after Berdakh, ul. Akademika C. Abdirova 1, Nukus
[2] National University of Uzbekistan, ul. Durmon Yuli 29, Tashkent
关键词
Face; Projector; Side-symmetric space; Von Neumann algebra;
D O I
10.3103/S1066369X18050055
中图分类号
学科分类号
摘要
We prove that predual of real part of von Neumann algebra is strongly facially symmetric space if and only if is it a direct sum of Abelian algebra and algebra of I2 type. At that, neutral strongly facially symmetric space is predual to Abelian algebra, only. © Allerton Press, Inc., 2018.
引用
收藏
页码:27 / 33
页数:6
相关论文
共 11 条
  • [1] Friedman Y., Russo B., A Geometric Spectral Theorem, Quart. J. Math. Oxford. Ser, 37, 147, pp. 263-277, (1986)
  • [2] Friedman Y., Russo B., Affine Structure of Facially Symmetric Spaces, Math. Proc. Cambridge Philos. Soc, 106, 1, pp. 107-124, (1989)
  • [3] Friedman Y., Russo B., Some Affine Geometric Aspects ofOperator Algebras, Pacific J.Math, 137, 1, pp. 123-144, (1989)
  • [4] Friedman Y., Russo B., Geometry of the Dual Ball of the Spin Factor, Proc. London Math. Soc., III Ser, 65, 1, pp. 142-174, (1992)
  • [5] Friedman Y., Russo B., Classification of Atomic Facially Symmetric Spaces, Canad. J. Math, 45, 1, pp. 33-87, (1993)
  • [6] Neal M., Russo B., State Space of JB, Math. Ann, 328, 4, pp. 585-624, (2004)
  • [7] Ibragimov M.M., Kudaybergenov K.K., Tleumuratov S.Z., Seypullaev Z.K., Geometric Description of the Preduals of Atomic Commutative von Neumann Algebras, Mathematical Notes, 93, 5, pp. 715-721, (2013)
  • [8] Ibragimov M.M., Kudaibergenov K.K., Geometric Description of L1-Spaces, Russian Mathematics, 57, 9, pp. 16-21, (2013)
  • [9] Edwards C.M., Ruttimann G.T., The Facial and Inner Ideal Structure of a Real JBW∗-Triple, Math. Nachr, 222, pp. 159-184, (2001)
  • [10] Takesaki M., Theory of Operator Algebras, 1, (1979)