A Network Immuno-Epidemiological HIV Model

被引:0
作者
Churni Gupta
Necibe Tuncer
Maia Martcheva
机构
[1] University of Florida,Department of Mathematics
[2] Florida Atlantic University,Department of Mathematical Sciences
来源
Bulletin of Mathematical Biology | 2021年 / 83卷
关键词
HIV; Network; Age structured; Basic reproduction number; Epidemic model;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we formulate a multi-scale nested immuno-epidemiological model of HIV on complex networks. The system is described by ordinary differential equations coupled with a partial differential equation. First, we prove the existence and uniqueness of the immunological model and then establish the well-posedness of the multi-scale model. We derive an explicit expression of the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_{0}$$\end{document} of the immuno-epidemiological model. The system has a disease-free equilibrium and an endemic equilibrium. The disease-free equilibrium is globally stable when R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_{0}<1$$\end{document} and unstable when R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0 >1$$\end{document}. Numerical simulations suggest that R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_{0}$$\end{document} increases as the number of nodes in the network increases. Further, we find that for a scale-free network the number of infected individuals at equilibrium is a hump-like function of the within-host reproduction number; however, the dependence becomes monotone if the network has predominantly low connectivity nodes or high connectivity nodes.
引用
收藏
相关论文
共 93 条
[1]  
Acevedo MA(2015)Spatial heterogeneity, host movement and mosquito-borne disease transmission PLoS ONE 10 e0127552-1327
[2]  
Prosper O(2012)Variable effect of co-infection on the HIV infectivity: within-host dynamics and epidemiological significance Theor Biol Med Model 63 1313-27
[3]  
Lopiano K(2003)Virus dynamics: a global analysis SIAM J Appl Math 13 1-153
[4]  
Nick Ruktanonchai T(2017)Effect of the latent reservoir on the evolution of HIV at the within- and between-host levels PLoS Comput Biol 69 145-308
[5]  
Caughlin T(2006)Evolution of virulence: interdependence, constraints, and selection using nested models Theor Popul Biol 218 289-355
[6]  
Martcheva M(2002)Modeling host-parasite coevolution: a nested approach based on mechanistic models J Theor Biol 79 325-28
[7]  
Osenberg CW(2017)Vector-borne pathogen and host evolution in a structured immuno-epidemiological system Bull Math Biol 68 2105-38
[8]  
Smith DL(2006)Mathematical study of a staged-progression HIV model with imperfect vaccine Bull Math Biol 72 25-1317
[9]  
Cuadros DF(2012)Lyapunov functions and global stability for age-structured HIV infection model SIAM J Appl Math 11 1295-307
[10]  
Garcia-Ramos G(2014)Epidemic models for complex networks with demographics Math Biosci Eng 2 295-1054