A method of symplectic integrations with adaptive time-steps for individual Hamiltonians in the planetary N-body problem

被引:0
作者
Vacheslav Vasilievitch Emel’yanenko
机构
[1] South Ural University,Department of Computational and Celestial Mechanics
来源
Celestial Mechanics and Dynamical Astronomy | 2007年 / 98卷
关键词
Symplectic integration; Adaptive integrators; -body simulations;
D O I
暂无
中图分类号
学科分类号
摘要
A new algorithm is developed for long-term integrations of the N-body problem. The method uses symplectic integrations of the Hamiltonian equations of motion for each body. This allows one to employ individual adaptive time-steps in computations. The efficiency of this technique is demonstrated by several tests performed for typical problems of Solar System dynamics.
引用
收藏
页码:191 / 202
页数:11
相关论文
共 38 条
[1]  
Brouwer D.(1950)The secular variations of the orbital elements of the principal planets Astron. Pap., Washington 13 85-107
[2]  
van Woerkom A.J.J.(1999)A hybrid symplectic integrator that permits close encounters between massive bodies Mon. Not. Roy. Astron. Soc. 304 793-799
[3]  
Chambers J.E.(1998)A multiple time step symplectic algorithm for integrating close encounters Astron. J. 116 2067-2077
[4]  
Duncan M.J.(2002)An explicit symplectic integrator for cometary orbits Celest. Mech. Dyn. Astron. 84 331-341
[5]  
Levison H.F.(2003)Efficient orbit integration by scaling for Kepler energy consistency Astron. J. 126 1097-1111
[6]  
Lee M.H.(1991)Symplectic integrators for long-term integrations in Celestial Mechanics Celest. Mech. Dyn. Astron. 52 221-240
[7]  
Emel’yanenko V.V.(2005)Explicit, time reversible, adaptive step size control SIAM J. Sci. Comput. 26 1838-1851
[8]  
Fukushima T.(1997)Practical symplectic methods with time transformation for the few-body problem Celest. Mech. Dyn. Astron. 67 145-165
[9]  
Gladman B.(2002)A time-transformed leapfrog scheme Celest. Mech. Dyn. Astron. 84 343-354
[10]  
Duncan M.(2002)Individual accuracy checks for massive bodies and particles in symplectic integration Astron. J. 124 3445-3448