Rotational symmetry and properties of the ancient solutions of Ricci flow on surfaces

被引:0
作者
Shu-Yu Hsu
机构
[1] National Chung Cheng University,Department of Mathematics
来源
Geometriae Dedicata | 2013年 / 162卷
关键词
Rotational symmetry; Ancient solutions; Ricci flow; Surfaces; A priori estimates; Rosenau solution; 58J35; 53C44; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We give a simple proof for the rotational symmetry of ancient solutions of Ricci flow on surfaces. As a consequence we obtain a simple proof of some results of Daskalopoulos, Hamilton and Sesum on the a priori estimates for the ancient solutions of Ricci flow on surfaces. We also give a simple proof for the solution to be a Rosenau solution under some mild conditions on the solutions of Ricci flow on surfaces.
引用
收藏
页码:375 / 388
页数:13
相关论文
共 16 条
[1]  
Chow B.(1991)The Ricci flow on the 2-sphere J. Differ. Geom. 33 325-334
[2]  
Chu S.C.(2007)Type II ancient solutions to the Ricci flow on surfaces Commun. Anal. Geom. 15 195-216
[3]  
Dahlberg B.E.J.(1986)Non-negative solutions of generalized porous medium equations Rev. Mat. Iberoam. 2 267-305
[4]  
Kenig C.(1982)Three-manifolds with positive Ricci curvature J. Differ. Geom. 17 255-306
[5]  
Hamilton R.S.(1986)Four-manifolds with positive curvature operator J. Differ. Geom. 24 153-179
[6]  
Hamilton R.S.(1988)The Ricci flow on surfaces Contemp. Math. 71 237-261
[7]  
Hamilton R.S.(1993)The Harnack estimate for the Ricci flow J. Differ. Geom. 37 225-243
[8]  
Hamilton R.S.(2006)A simple proof on the non-existence of shrinking breathers for the Ricci flow Calc. Var. P.D.E. 27 59-73
[9]  
Hsu S.Y.(2009)Generalized J. Math. Kyoto Univ. 49 503-571
[10]  
Hsu S.Y.(1999)-geodesic and monotonicity of the generalized reduced volume in the Ricci flow Nonlinear Anal. TMA 37 875-914