Multilevel Monte Carlo simulation for the Heston stochastic volatility model

被引:0
|
作者
Chao Zheng
机构
[1] Zhejiang University of Finance and Economics,School of Data Sciences
来源
Advances in Computational Mathematics | 2023年 / 49卷
关键词
Heston model; Multilevel Monte Carlo; Convergence rate; 60H35; 65C30; 91G60;
D O I
暂无
中图分类号
学科分类号
摘要
We combine the multilevel Monte Carlo (MLMC) method with a numerical scheme for the Heston model that simulates the variance process exactly or almost exactly and applies the stochastic trapezoidal rule to approximate the time-integrated variance process within the SDE of the logarithmic asset process. We conduct separate simulations for path-independent options and path-dependent options. In both situations, novel MLMC estimators are established, and the theoretical convergence rates are derived for the full parameter regime. We present numerical results to demonstrate the efficiency of our MLMC estimators.
引用
收藏
相关论文
共 50 条
  • [1] Multilevel Monte Carlo simulation for the Heston stochastic volatility model
    Zheng, Chao
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (06)
  • [2] THE HESTON STOCHASTIC-LOCAL VOLATILITY MODEL: EFFICIENT MONTE CARLO SIMULATION
    van der Stoep, Anthonie W.
    Grzelak, Lech A.
    Oosterlee, Cornelis W.
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2014, 17 (07)
  • [3] Monte Carlo Simulation of a Two-Factor Stochastic Volatility Model
    Goncu, Ahmet
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTIST, IMECS 2012, VOL II, 2012, : 1495 - 1500
  • [4] EFFICIENT, ALMOST EXACT SIMULATION OF THE HESTON STOCHASTIC VOLATILITY MODEL
    Van Haastrecht, Alexander
    Pelsser, Antoon
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2010, 13 (01) : 1 - 43
  • [5] On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters
    Lay, Harold A.
    Colgin, Zane
    Reshniak, Viktor
    Khaliq, Abdul Q. M.
    MONTE CARLO METHODS AND APPLICATIONS, 2018, 24 (04): : 309 - 321
  • [6] Dual control Monte-Carlo method for tight bounds of value function under Heston stochastic volatility model
    Ma, Jingtang
    Li, Wenyuan
    Zheng, Harry
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 280 (02) : 428 - 440
  • [7] Gamma expansion of the Heston stochastic volatility model
    Glasserman, Paul
    Kim, Kyoung-Kuk
    FINANCE AND STOCHASTICS, 2011, 15 (02) : 267 - 296
  • [8] The Heston stochastic volatility model in Hilbert space
    Benth, Fred Espen
    Simonsen, Iben Cathrine
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (04) : 733 - 750
  • [9] The rough Hawkes Heston stochastic volatility model
    Bondi, Alessandro
    Pulido, Sergio
    Scotti, Simone
    MATHEMATICAL FINANCE, 2024, 34 (04) : 1197 - 1241
  • [10] The Alpha-Heston stochastic volatility model
    Jiao, Ying
    Ma, Chunhua
    Scotti, Simone
    Zhou, Chao
    MATHEMATICAL FINANCE, 2021, 31 (03) : 943 - 978