Local Limit Theorems for Sequences of Simple Random Walks on Graphs

被引:0
作者
D. A. Croydon
B. M. Hambly
机构
[1] University of Warwick,Department of Statistics
[2] Mathematical Institute,undefined
来源
Potential Analysis | 2008年 / 29卷
关键词
Local limit theorem; Random walk; Parabolic Harnack inequality; Resistance metric; 60J35; 60G50;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, local limit theorems for sequences of simple random walks on graphs are established. The results formulated are motivated by a variety of random graph models, and explanations are provided as to how they apply to supercritical percolation clusters, graph trees converging to the continuum random tree and the homogenisation problem for nested fractals. A subsequential local limit theorem for the simple random walks on generalised Sierpinski carpet graphs is also presented.
引用
收藏
页码:351 / 389
页数:38
相关论文
共 28 条
[1]  
Aldous D.(1993)The continuum random tree. III Ann. Probab. 21 248-289
[2]  
Barlow M.T.(1989)The construction of Brownian motion on the Sierpiński carpet Ann. Inst. H. Poincaré Probab. Statist. 25 225-257
[3]  
Bass R.F.(1992)Transition densities for Brownian motion on the Sierpiński carpet Probab. Theory Related Fields 91 307-330
[4]  
Barlow M.T.(1999)Brownian motion and harmonic analysis on Sierpinski carpets Canad. J. Math. 51 673-744
[5]  
Bass R.F.(2005)Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs Comm. Pure Appl. Math. 58 1642-1677
[6]  
Barlow M.T.(2005)A geometric property of the Sierpiński carpet Quaestiones Math. 28 251-262
[7]  
Bass R.F.(2005)Probabilistic and fractal aspects of Lévy trees Probab. Theory Related Fields 131 553-603
[8]  
Barlow M.T.(1994)Transition density estimates for Brownian motion on affine nested fractals Comm. Math. Phys. 165 595-620
[9]  
Coulhon T.(2002)Harnack inequalities and sub-Gaussian estimates for random walks Math. Ann. 324 521-556
[10]  
Kumagai T.(1998)The homogenization problem for the Vicsek set Stochastic Process Appl. 76 167-190