A Geometric Algebra Perspective on Quantum Computational Gates and Universality in Quantum Computing

被引:0
|
作者
Carlo Cafaro
Stefano Mancini
机构
[1] Università di Camerino,Dipartimento di Fisica
来源
关键词
Quantum information; quantum gates; geometric algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the utility of geometric (Clifford) algebras (GA) methods in two specific applications to quantum information science. First, using the multiparticle spacetime algebra (MSTA, the geometric algebra of a relativistic configuration space), we present an explicit algebraic description of one and two-qubit quantum states together with a MSTA characterization of one and two-qubit quantum computational gates. Second, using the above mentioned characterization and the GA description of the Lie algebras SO (3) and SU (2) based on the rotor group Spin+ (3, 0) formalism, we reexamine Boykin’s proof of universality of quantum gates. We conclude that the MSTA approach does lead to a useful conceptual unification where the complex qubit space and the complex space of unitary operators acting on them become united, with both being made just by multivectors in real space. Finally, the GA approach to rotations based on the rotor group does bring conceptual and computational advantages compared to standard vectorial and matricial approaches.
引用
收藏
页码:493 / 519
页数:26
相关论文
共 50 条
  • [21] Quantum computing with time-travelling quantum gates
    Can, Wang
    Lu, Chao-Yang
    Chen, Ming -Cheng
    ACTA PHYSICA SINICA, 2024, 73 (02)
  • [22] Inertial geometric quantum logic gates
    Turyansky, D.
    Ovdat, O.
    Dann, R.
    Aqua, Z.
    Kosloff, R.
    Dayan, B.
    Pick, A.
    PHYSICAL REVIEW APPLIED, 2024, 21 (05):
  • [23] COMPOSITE PULSES AS GEOMETRIC QUANTUM GATES
    Ota, Yukihiro
    Kondo, Yasushi
    DECOHERENCE SUPPRESSION IN QUANTUM SYSTEMS 2008, 2010, 3 : 125 - 149
  • [24] Geometric quantum gates with superconducting qubits
    Kamleitner, I.
    Solinas, P.
    Mueller, C.
    Shnirman, A.
    Mottonen, M.
    PHYSICAL REVIEW B, 2011, 83 (21):
  • [25] Quantum gates and their coexisting geometric phases
    Wu, Lian-Ao
    Bishop, C. Allen
    Byrd, Mark S.
    PHYSICAL REVIEW A, 2011, 84 (02):
  • [26] Geometric methods for construction of quantum gates
    Giunashvili Z.
    Journal of Mathematical Sciences, 2008, 153 (2) : 120 - 158
  • [27] Universality of black hole quantum computing
    Dvali, Gia
    Gomez, Cesar
    Luest, Dieter
    Omar, Yasser
    Richter, Benedikt
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (01):
  • [28] Constructions for quantum computing with symmetrized gates
    Ivanyos, Gabor
    Nagy, Attila B.
    Ronyai, Lajos
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (05) : 411 - 429
  • [29] Efficient Z gates for quantum computing
    Mckay, David C.
    Wood, Christopher J.
    Sheldon, Sarah
    Chow, Jerry M.
    Gambetta, Jay M.
    PHYSICAL REVIEW A, 2017, 96 (02)
  • [30] Quantum Register Algebra: the mathematical language for quantum computing
    J. Hrdina
    D. Hildenbrand
    A. Návrat
    C. Steinmetz
    R. Alves
    C. Lavor
    P. Vašík
    I. Eryganov
    Quantum Information Processing, 22