A Geometric Algebra Perspective on Quantum Computational Gates and Universality in Quantum Computing

被引:0
|
作者
Carlo Cafaro
Stefano Mancini
机构
[1] Università di Camerino,Dipartimento di Fisica
来源
Advances in Applied Clifford Algebras | 2011年 / 21卷
关键词
Quantum information; quantum gates; geometric algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the utility of geometric (Clifford) algebras (GA) methods in two specific applications to quantum information science. First, using the multiparticle spacetime algebra (MSTA, the geometric algebra of a relativistic configuration space), we present an explicit algebraic description of one and two-qubit quantum states together with a MSTA characterization of one and two-qubit quantum computational gates. Second, using the above mentioned characterization and the GA description of the Lie algebras SO (3) and SU (2) based on the rotor group Spin+ (3, 0) formalism, we reexamine Boykin’s proof of universality of quantum gates. We conclude that the MSTA approach does lead to a useful conceptual unification where the complex qubit space and the complex space of unitary operators acting on them become united, with both being made just by multivectors in real space. Finally, the GA approach to rotations based on the rotor group does bring conceptual and computational advantages compared to standard vectorial and matricial approaches.
引用
收藏
页码:493 / 519
页数:26
相关论文
共 50 条
  • [1] A Geometric Algebra Perspective on Quantum Computational Gates and Universality in Quantum Computing
    Cafaro, Carlo
    Mancini, Stefano
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (03) : 493 - 519
  • [2] From Entanglement to Universality: A Multiparticle Spacetime Algebra Approach to Quantum Computational Gates Revisited
    Cafaro, Carlo
    Bahreyni, Newshaw
    Rossetti, Leonardo
    SYMMETRY-BASEL, 2024, 16 (06):
  • [3] An Online Calculator for Quantum Computing Operations Based on Geometric Algebra
    Alves, R.
    Hildenbrand, D.
    Hrdina, J.
    Lavor, C.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (01)
  • [4] An Online Calculator for Quantum Computing Operations Based on Geometric Algebra
    R. Alves
    D. Hildenbrand
    J. Hrdina
    C. Lavor
    Advances in Applied Clifford Algebras, 2022, 32
  • [5] Quantum Gates and Quantum Algorithms with Clifford Algebra Technique
    Gregoric, M.
    Borstnik, N. S. Mankoc
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (02) : 507 - 515
  • [6] Quantum Gates and Quantum Algorithms with Clifford Algebra Technique
    M. Gregorič
    N. S. Mankoč Borštnik
    International Journal of Theoretical Physics, 2009, 48 : 507 - 515
  • [7] Quantum Computing Based on Quantum Bit Algebra QBA
    Hrdina, Jaroslav
    Tichy, Radek
    MODELLING AND SIMULATION FOR AUTONOMOUS SYSTEMS (MESAS 2020), 2021, 12619 : 3 - 14
  • [8] Quantum Register Algebra: the mathematical language for quantum computing
    Hrdina, J.
    Hildenbrand, D.
    Navrat, A.
    Steinmetz, C.
    Alves, R.
    Lavor, C.
    Vasik, P.
    Eryganov, I.
    QUANTUM INFORMATION PROCESSING, 2023, 22 (09)
  • [9] Quantum Register Algebra: the mathematical language for quantum computing
    J. Hrdina
    D. Hildenbrand
    A. Návrat
    C. Steinmetz
    R. Alves
    C. Lavor
    P. Vašík
    I. Eryganov
    Quantum Information Processing, 22
  • [10] Geometric Algebra Speaks Quantum Esperanto
    Sebastian Xambó-Descamps
    Advances in Applied Clifford Algebras, 2024, 34