Reversibility of 1D Cellular Automata with Periodic Boundary over Finite Fields \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pmb{ {\mathbb{Z}}}_{p}$\end{document}

被引:1
作者
Zubeyir Cinkir
Hasan Akin
Irfan Siap
机构
[1] Zirve University,Department of Mathematics, Faculty of Education
[2] Yıldız Technical University,Department of Mathematics
关键词
Cellular automata; Periodic boundary condition; Reversibility; Matrix representations;
D O I
10.1007/s10955-011-0202-2
中图分类号
学科分类号
摘要
The reversibility problem for linear cellular automata with null boundary defined by a rule matrix in the form of a pentadiagonal matrix was studied recently over the binary field ℤ2 (del Rey and Rodriguez Sánchez in Appl. Math. Comput., 2011, doi:10.1016/j.amc.2011.03.033). In this paper, we study one-dimensional linear cellular automata with periodic boundary conditions over any finite field ℤp. For any given p≥2, we show that the reversibility problem can be reduced to solving a recurrence relation depending on the number of cells and the coefficients of the local rules defining the one-dimensional linear cellular automata. More specifically, for any given values (from any fixed field ℤp) of the coefficients of the local rules, we outline a computer algorithm determining the recurrence relation which can be solved by testing reversibility of the cellular automaton for some finite number of cells. As an example, we give the full criteria for the reversibility of the one-dimensional linear cellular automata over the fields ℤ2 and ℤ3.
引用
收藏
相关论文
共 23 条
[1]  
Akın H.(2008)The topological entropy of invertible cellular automata J. Comput. Appl. Math. 213 501-508
[2]  
Akın H.(2007)On cellular automata over Galois rings Inf. Process. Lett. 103 24-27
[3]  
Siap I.(2004)On the size of inverse neighborhoods for one-dimensional reversible cellular automata Theor. Comput. Sci. 325 273-284
[4]  
Czeizler E.(2007)Inverse rules of ECA with rule number 150 Appl. Math. Comput. 189 1782-1786
[5]  
Hernández Encinas L.(1998)Invertible linear cellular automata over: algorithmic and dynamical aspects J. Comput. Syst. Sci. 56 60-67
[6]  
del Rey A.M.(1984)Algebraic properties of cellular automata Commun. Math. Phys. 93 219-258
[7]  
Manzini G.(1994)Reversible cellular automata J. Inf. Process. Soc. Jpn. 35 315-321
[8]  
Margara L.(2008)Reversible computing and cellular automata—a survey Theor. Comput. Sci. 395 101-131
[9]  
Martin O.(2004)On reversibility of cellular automata with periodic boundary conditions J. Phys. A, Math. Gen. 37 5789-5804
[10]  
Odlyzko A.M.(2002)Matrix methods and local properties of reversible one-dimensional cellular automata J. Phys. A, Math. Gen. 35 5563-5573