TWISTED CONJUGACY IN LINEAR ALGEBRAIC GROUPS

被引:0
作者
S. BHUNIA
A. BOSE
机构
[1] Education and Research (IISER) Mohali,Department of Mathematics, Indian Institute of Science
来源
Transformation Groups | 2023年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let k be an algebraically closed field, G a linear algebraic group over k and φ ∈ Aut(G), the group of all algebraic group automorphisms of G. Two elements x; y of G are said to be φ-twisted conjugate if y = gxφ(g)–1 for some g ∈ G. In this paper we prove that for a connected non-solvable linear algebraic group G over k, the number of its φ-twisted conjugacy classes is infinite for every φ ∈ Aut(G).
引用
收藏
页码:61 / 75
页数:14
相关论文
共 50 条
[21]   Twisted conjugacy classes in unitriangular groups [J].
Nasybullov, Timur .
JOURNAL OF GROUP THEORY, 2019, 22 (02) :253-266
[22]   TWISTED CONJUGACY IN CERTAIN ARTIN GROUPS [J].
Juhasz, A. .
ISCHIA GROUP THEORY 2010, 2012, :175-195
[23]   Twisted conjugacy classes in nilpotent groups [J].
Roman'kov, V. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (04) :664-671
[24]   Twisted conjugacy classes in nilpotent groups [J].
Goncalves, Daciberg ;
Wong, Peter .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 :11-27
[25]   CONJUGACY CLASSES IN ALGEBRAIC-GROUPS [J].
SPRINGER, TA .
LECTURE NOTES IN MATHEMATICS, 1986, 1185 :175-209
[26]   Effective twisted conjugacy separability of nilpotent groups [J].
Jonas Deré ;
Mark Pengitore .
Mathematische Zeitschrift, 2019, 292 :763-790
[27]   The twisted conjugacy problem for endomorphisms of polycyclic groups [J].
Roman'kov, V. .
JOURNAL OF GROUP THEORY, 2010, 13 (03) :355-364
[28]   THE TWISTED CONJUGACY PROBLEM FOR ENDOMORPHISMS OF METABELIAN GROUPS [J].
Ventura, E. ;
Roman'kov, V. A. .
ALGEBRA AND LOGIC, 2009, 48 (02) :89-98
[29]   Twisted conjugacy classes in exponential growth groups [J].
Gonçalves, D ;
Wong, P .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :261-268
[30]   The twisted conjugacy problem for endomorphisms of metabelian groups [J].
E. Ventura ;
V. A. Roman’kov .
Algebra and Logic, 2009, 48 :89-98