Error performance of optically preamplified hybrid BPSK-PPM systems with transmitter and receiver imperfections

被引:0
作者
Taha Landolsi
Aly F. Elrefaie
Sanaa Hamid
Mohamed S. Hassan
机构
[1] American University of Sharjah,School of Electronic and Electrical Engineering
[2] W & Wsens Devices,undefined
[3] University of Leeds,undefined
来源
Photonic Network Communications | 2017年 / 33卷
关键词
Coherent and direct detection; Extinction ratio; Probability of bit error; Pulse position modulation; Phase offset;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the impact of the transmitter finite extinction ratio and the receiver carrier recovery phase offset on the error performance of two optically preamplified hybrid M-ary pulse position modulation (PPM) systems with coherent detection. The first system, referred to as PB-mPPM, combines polarization division multiplexing (PDM) with binary phase-shift keying and M-ary PPM, and the other system, referred to as PQ-mPPM, combines PDM with quadrature phase-shift keying and M-ary PPM. We provide new expressions for the probability of bit error for PB-mPPM and PQ-mPPM under finite extinction ratios and phase offset. The extinction ratio study indicates that the coherent systems PB-mPPM and PQ-mPPM outperform the direct-detection ones. It also shows that at Pb=10-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_b=10^{-9}$$\end{document} PB-mPPM has a slight advantage over PQ-mPPM. For example, for a symbol size M=16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=16$$\end{document} and extinction ratio r=30\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=30$$\end{document} dB, PB-mPPM requires 0.6 dB less SNR per bit than PQ-mPPM to achieve Pb=10-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_b=10^{-9}$$\end{document}. This investigation demonstrates that PB-mPPM is less complex and less sensitive to the variations of the offset angle θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} than PQ-mPPM. For instance, for M=16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=16$$\end{document}, r=30\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=30$$\end{document} dB, and θ=10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta =10^{\circ }$$\end{document} PB-mPPM requires 1.6 dB less than PQ-mPPM to achieve Pb=10-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_b=10^{-9}$$\end{document}. However, PB-mPPM enhanced robustness to phase offset comes at the expense of a reduced bandwidth efficiency when compared to PQ-mPPM. For example, for M=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2$$\end{document} its bandwidth efficiency is 60 % that of PQ-mPPM and ≈86%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx 86\,\%$$\end{document} for M=1024\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1024$$\end{document}. For these reasons, PB-mPPM can be considered a reasonable design trade-off for M-ary PPM systems.
引用
收藏
页码:231 / 242
页数:11
相关论文
共 35 条
[1]  
Phillips A(1994)Performance evaluation of optically preamplified PPM systems Photon. Technol. Lett. IEEE 6 651-653
[2]  
Cryan R(1996)Optically preamplified pulse-position modulation for fibre-optic communication systems Optoelectron. IEE Proc. 143 153-159
[3]  
Senior J(2005)Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence IEEE Trans. Commun. 53 1455-1461
[4]  
Phillips A(2007)Laser communication transmitter and receiver design J. Opt. Fiber Commun. Rep. 4 225-362
[5]  
Cryan R(2014)Error performance of preamplified optical PPM systems with finite extinction ratios J. Opt. Fiber Technol. 20 365-368
[6]  
Senior J(2014)Performance evaluation of optically preamplified PPM systems with dual-polarized ASE noise and finite extinction ratios IEEE Trans. Commun. 62 3644-3651
[7]  
Kiasaleh K(2006)Options, feasibility, and availability of IEEE J. Lightwave Technol. 24 1317-1322
[8]  
Caplan D(2012) hybrids for coherent optical systems J. Lightwave Technol. 30 406-413
[9]  
Landolsi T(2015)Demonstration of record sensitivities in optically preamplified receivers by combining PDM-QPSK and M-ary pulse-position modulation J. Opt. Fiber Technol. 25 33-38
[10]  
Elrefaie A(2003)Performance evaluation of optically-preamplified hybrid QPSK M-ary PPM systems with finite extinction ratios Photon. Technol. Lett. IEEE 15 879-881