A Novel Deep Learning Model for Medical Image Segmentation with Convolutional Neural Network and Transformer

被引:0
作者
Zhuo Zhang
Hongbing Wu
Huan Zhao
Yicheng Shi
Jifang Wang
Hua Bai
Baoshan Sun
机构
[1] Tiangong University,Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronic and Information Engineering
[2] Tiangong University,School of Computer Science and Technology
[3] Tianjin University,College of Management and Economics
来源
Interdisciplinary Sciences: Computational Life Sciences | 2023年 / 15卷
关键词
Deep learning; Medical image segmentation; Transformer; UNet; Attention mechanism;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:663 / 677
页数:14
相关论文
共 63 条
[1]  
Otsu N(2007)A threshold selection method from Gray-level histograms IEEE Trans Syst Man Cybern 9 62-66
[2]  
Prastawa M(2009)Simulation of brain tumors in MR images for evaluation of segmentation efficacy Med Image Anal 13 297-311
[3]  
Bullitt E(2008)Efficient multilevel brain tumor segmentation with integrated Bayesian model classification IEEE Trans Med Imaging 27 629-640
[4]  
Gerig G(2022)DS-TransUNet: dual swin transformer U-Net for medical image segmentation IEEE Trans Instrum Meas 71 4005615-651
[5]  
Corso JJ(2015)Fully convolutional networks for semantic segmentation IEEE Trans Pattern Anal Mach Intell 39 640-934
[6]  
Sharon E(2018)White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks Neuroimage-Clin 17 918-2449
[7]  
Dube S(2017)Attention is all you need Adv Neural Inf Process Syst 36 2441-6908
[8]  
Lin AL(2022)UCTransNet: rethinking the skip connections in u-net from a channel-wise perspective with transformer Proc AAAI Conf Artif Intell 45 6896-28
[9]  
Chen BZ(2023)CCNet: criss-cross attention for semantic segmentation Int Conf Comput Vis 70 5002412-2674
[10]  
Xu JY(2021)Multigrained attention network for infrared and visible image fusion IEEE Trans Instrum Meas 70 15-87