\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{W}}$$\end{document}-Symmetry of the Adèlic Grassmannian

被引:0
作者
David Ben-Zvi
Thomas Nevins
机构
[1] University of Texas at Austin,Department of Mathematics
[2] University of Illinois at Urbana-Champaign,Department of Mathematics
关键词
Modulus Space; Line Bundle; Vertex Operator; Conformal Block; Factorization Space;
D O I
10.1007/s00220-009-0925-y
中图分类号
学科分类号
摘要
We give a geometric construction of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{W}_{1+\infty}}$$\end{document} vertex algebra as the infinitesimal form of a factorization structure on an adèlic Grassmannian. This gives a concise interpretation of the higher symmetries and Bäcklund-Darboux transformations for the KP hierarchy and its multicomponent extensions in terms of a version of “\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{W}_{1+\infty}}$$\end{document}-geometry”: the geometry of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document}-bundles on smooth curves, or equivalently torsion-free sheaves on cuspidal curves.
引用
收藏
页码:185 / 204
页数:19
相关论文
共 54 条
[1]  
Arbarello E.(1988)Modulî spaces of curves and representation theory Commun. Math. Phys. 117 1-36
[2]  
De Concini C.(1996)Bäcklund–Darboux transformations in Sato’s Grassmannian Serdica Math. J. 22 571-586
[3]  
Kac V.(1997)Bispectral algebras of commuting ordinary differential operators Commun. Math. Phys. 190 331-373
[4]  
Procesi C.(1998)Highest weight modules over Duke Math. J. 93 41-72
[5]  
Bakalov B.(2002) algebra and the bispectral problem Moscow Math. J. 2 477-532
[6]  
Horozov E.(1988)-factors for Gauss-Manin determinants Commun. Math. Phys. 118 651-701
[7]  
Yakimov M.(2004)Determinant bundles and Virasoro algebras J. Amer. Math. Soc. 17 155-179
[8]  
Bakalov B.(2008)Cusps and Compositio Math. 144 1403-1428
[9]  
Horozov E.(2000)–modules Math. Ann. 318 127-147
[10]  
Yakimov M.(2002)Perverse bundles and Calogero-Moser spaces Int. Math. Res. Not. 2 1347-1396