Bi@C fibre synthesized by electrostatic spinning as high-performance anode material for Li-ion batteries

被引:0
|
作者
Chonghua Shi
Hang Fu
Jiajin Nie
Shaowei Yao
机构
[1] North China University of Science and Technology,College of Materials Science and Engineering
[2] Key Laboratory of Inorganic Material of Hebei Province,undefined
来源
Ionics | 2022年 / 28卷
关键词
Bismuth-based material; Electrostatic spinning; Lithium-ion battery; Electrochemical performance;
D O I
暂无
中图分类号
学科分类号
摘要
Bismuth-based material as a stable anode material for lithium-ion battery, which has the advantages of stable operating voltage and large volume energy density. In order to make the most of the theoretical specific capacity of 386 mAh g −1 bismuth-based materials, the carbon coating method will be used to obtain stable specific capacity. However, electrostatic spinning is great method of carbon coated precursor preparation. Here, the BiCl3 reagent is added into the PAN-DMF spinning liquid to synthesize the fibrous Bi@C composites precursor, and the Bi@C fibre is obtained after heat treatment. Then the Bi@C fibres with different BiCl3 content are used as anode materials for lithium-ion batteries to test the electrochemical performance of Bi@C. The results show that Bi@C fibre electrode can maintain the discharge capacity of 415.3 mAh g−1 at the current density of 100 mA g−1 for 100 cycles when the content of BiCl3 is 1.5 g. When the current density is 500 mA g−1, the specific capacity can still reach 415.7 mAh g−1 after 250 cycles and shows excellent electrochemical performance.
引用
收藏
页码:4977 / 4987
页数:10
相关论文
共 50 条
  • [21] Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries
    Kostiantyn V. Kravchyk
    Maksym V. Kovalenko
    Maryna I. Bodnarchuk
    Scientific Reports, 10
  • [22] Deposition of silver nanoparticles into silicon/carbon composite as a high-performance anode material for Li-ion batteries
    Xianhua Hou
    Miao Zhang
    Jiyun Wang
    Shejun Hu
    Xiang Liu
    Journal of Solid State Electrochemistry, 2015, 19 : 3595 - 3604
  • [23] Deposition of silver nanoparticles into silicon/carbon composite as a high-performance anode material for Li-ion batteries
    Hou, Xianhua
    Zhang, Miao
    Wang, Jiyun
    Hu, Shejun
    Liu, Xiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (12) : 3595 - 3604
  • [24] In situ graphitized hard carbon xerogel: A promising high-performance anode material for Li-ion batteries
    Gaikwad, Mayur M.
    Sharma, Chandra S.
    JOURNAL OF MATERIALS RESEARCH, 2020, 35 (21) : 2989 - 3003
  • [25] In situ graphitized hard carbon xerogel: A promising high-performance anode material for Li-ion batteries
    Mayur M. Gaikwad
    Chandra S. Sharma
    Journal of Materials Research, 2020, 35 : 2989 - 3003
  • [26] First Principles Study of Penta-siligraphene as High-Performance Anode Material for Li-Ion Batteries
    Wang, Hewen
    Wu, Musheng
    Tian, Zhengfang
    Xu, Bo
    Ouyang, Chuying
    NANOSCALE RESEARCH LETTERS, 2019, 14 (1):
  • [27] First Principles Study of Penta-siligraphene as High-Performance Anode Material for Li-Ion Batteries
    Hewen Wang
    Musheng Wu
    Zhengfang Tian
    Bo Xu
    Chuying Ouyang
    Nanoscale Research Letters, 2019, 14
  • [28] Topological semimetal porous carbon as a high-performance anode for Li-ion batteries
    Xie, Huanhuan
    Qie, Yu
    Imran, Muhammad
    Sun, Qiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (23) : 14253 - 14259
  • [29] Si/graphene composite as high-performance anode materials for Li-ion batteries
    Ying-jie Zhang
    Hua Chu
    Li-wen Zhao
    Long-fei Yuan
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 6657 - 6663
  • [30] Advanced Nanostructured Cathode and Anode Materials for High-Performance Li-Ion Batteries
    Liu, Jun
    Wan, Yanling
    Liu, Wei
    Wang, Jinbing
    Zhou, Yichun
    Xue, Dongfeng
    ENERGY AND ENVIRONMENT FOCUS, 2012, 1 (01) : 19 - 38