Large free sets in powers of universal algebras

被引:0
作者
Taras Banakh
Artur Bartoszewicz
Szymon Gła̧b
机构
[1] Ivan Franko University of Lviv,Institute of Mathematics
[2] Jan Kochanowski University,undefined
[3] Technical University of Łódź,undefined
来源
Algebra universalis | 2014年 / 71卷
关键词
Primary: 17A50; Secondary: 08A99; free set; universal algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for each universal algebra (A,A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A, \mathcal{A})}$$\end{document} of cardinality |A|≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|A| \geq 2}$$\end{document} and infinite set X of cardinality |X|≥|A|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|X| \geq | \mathcal{A}|}$$\end{document} , the X-th power (AX,AX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A^{X}, \mathcal{A}^{X})}$$\end{document} of the algebra (A,A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A, \mathcal{A})}$$\end{document} contains a free subset F⊂AX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F} \subset A^{X}}$$\end{document} of cardinality |F|=2|X|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\mathcal{F}| = 2^{|X|}}$$\end{document} . This generalizes the classical Fichtenholtz–Kantorovitch–Hausdorff result on the existence of an independent family I⊂P(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I} \subset \mathcal{P}(X)}$$\end{document} of cardinality |I|=|P(X)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\mathcal{I}| = |\mathcal{P}(X)|}$$\end{document} in the Boolean algebra P(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}(X)}$$\end{document} of subsets of an infinite set X.
引用
收藏
页码:23 / 29
页数:6
相关论文
共 15 条
[1]  
Balcar B.(1982)Independent families in complete Boolean algebras Trans. Amer. Math. Soc. 274 607-618
[2]  
Franěk F.(2013)Large free linear algebras of real and complex functions Linear Algebra Appl. 438 3689-3701
[3]  
Bartoszewicz A.(1934)Sur les opérations linéaires dans l’espace des fonctions bornées Studia Math. 5 69-98
[4]  
Gla̧b Sz.(1979)Some old and new problems in the independence theory Coll. Math. 42 127-189
[5]  
Paszkiewicz A.(1995)Independence algebras Algebra Universalis 33 294-318
[6]  
Fichtenholz G.(1936)Über zwei Sätze von G. Fichtenholz und L. Kantorovitch Studia Math. 6 18-19
[7]  
Kantorovitch L.(1958)A general scheme of the notions of independence in mathematics Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 731-736
[8]  
Głazek K.(1961)Independence and homomorphisms in abstract algebras Fund. Math. 50 45-61
[9]  
Gould V.(1966)Independence in abstract algebras Results and problems. Colloq. Math. 14 169-188
[10]  
Hausdorff F.(1961)Independence in a certain class of abstract algebras Fund. Math. 50 333-340