A minimal search method for solving fractional integro-differential equations based on modified Legendre multiwavelets

被引:0
|
作者
Longbin Wu
Zhong Chen
Xiaohua Ding
机构
[1] Harbin Institute of Technology at Weihai,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2022年 / 68卷
关键词
Modified multiwavelet bases; Fractional integro–differential equation; Minimal search method; 34A45; 65J10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper improves the modified multiwavelets bases of minimal search method for the fractional integro-differential equation. First, it shows the unique solvability of the equation. And then the Legendre multiwavelets are improved and the modified multiwavelets in reproducing kernel space are obtained. Subsequently, it is established a strict theory for obtaining the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-approximate solution with minimal search method. Finally, some examples show that the modified continuous multiwavelets method is more effective and stable than the Legendre multiwavelets and other methods.
引用
收藏
页码:1467 / 1483
页数:16
相关论文
共 50 条
  • [1] A minimal search method for solving fractional integro-differential equations based on modified Legendre multiwavelets
    Wu, Longbin
    Chen, Zhong
    Ding, Xiaohua
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 1467 - 1483
  • [2] Legendre wavelets method for solving fractional integro-differential equations
    Meng, Zhijun
    Wang, Lifeng
    Li, Hao
    Zhang, Wei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (06) : 1275 - 1291
  • [3] A Legendre collocation method for fractional integro-differential equations
    Saadatmandi, Abbas
    Dehghan, Mehdi
    JOURNAL OF VIBRATION AND CONTROL, 2011, 17 (13) : 2050 - 2058
  • [4] Solving fractional Fredholm integro-differential equations using Legendre wavelets
    Abbaszadeh, D.
    Kajani, M. Tavassoli
    Momeni, M.
    Zahraei, M.
    Maleki, M.
    APPLIED NUMERICAL MATHEMATICS, 2021, 166 : 168 - 185
  • [5] The Legendre Wavelet Method for Solving Singular Integro-differential Equations
    Aghazadeh, Naser
    Atani, Y. Gholizade
    Noras, P.
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2014, 2 (02): : 62 - 68
  • [6] SOLVING TWO-DIMENSIONAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY LEGENDRE WAVELETS
    Mojahedfar, M.
    Marzabad, A. Tari
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (07): : 2419 - 2435
  • [7] Wavelet collocation method based on Legendre polynomials and its application in solving the stochastic fractional integro-differential equations
    Singh, Abhishek Kumar
    Mehra, Mani
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 51
  • [8] Efficient Legendre pseudospectral method for solving integral and integro-differential equations
    El-Kady, M.
    Biomy, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (07) : 1724 - 1739
  • [9] An efficient method for solving systems of fractional integro-differential equations
    Momani, S.
    Qaralleh, R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (3-4) : 459 - 470
  • [10] Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis
    Tedjani, A. H.
    Amin, A. Z.
    Abdel-Aty, Abdel-Haleem
    Abdelkawy, M. A.
    Mahmoud, Mona
    AIMS MATHEMATICS, 2024, 9 (04): : 7973 - 8000