Weighted composition operators on the Dirichlet space: boundedness and spectral properties

被引:0
作者
I. Chalendar
E. A. Gallardo-Gutiérrez
J. R. Partington
机构
[1] Université Lyon 1,UMR 5208, Institut Camille Jordan, Ecole Centrale de Lyon, INSA de Lyon
[2] Université de Lyon,Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas
[3] CNRS,School of Mathematics
[4] Universidad Complutense de Madrid e ICMAT,undefined
[5] University of Leeds,undefined
来源
Mathematische Annalen | 2015年 / 363卷
关键词
Dirichlet space; Weighted composition operator; Primary 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
Boundedness of weighted composition operators Wu,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{u,\varphi }$$\end{document} acting on the classical Dirichlet space D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document} as Wu,φf=u(f∘φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{u,\varphi }f= u\, (f\circ \varphi )$$\end{document} is studied in terms of the multiplier space associated to the symbol φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, i.e., M(φ)={u∈D:Wu,φis bounded onD}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}(\varphi )=\{ u \in \mathcal D: W_{u,\varphi } \hbox { is bounded on } \mathcal D\}$$\end{document}. A prominent role is played by the multipliers of the Dirichlet space. As a consequence, the spectrum of Wu,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{u,\varphi }$$\end{document} in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document} whenever φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is an automorphism of the unit disc is studied, extending a recent work of Hyvärinen et al. (J. Funct. Anal. 265:1749–1777, 2013) to the context of the Dirichlet space.
引用
收藏
页码:1265 / 1279
页数:14
相关论文
共 50 条
[41]   On the closed range problem for composition operators on the Dirichlet space [J].
Zorboska, Nina .
CONCRETE OPERATORS, 2019, 6 (01) :76-81
[42]   Algebraic properties of Toeplitz operators on the Dirichlet space [J].
Lee, Young Joo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) :1316-1329
[43]   Weighted composition operators on the Lipschitz space in polydiscs [J].
Zhou, ZH .
GEOMETRIC FUNCTION THEORY IN SEVERAL COMPLEX VARIABLES, 2004, :333-342
[44]   Eigenvalues of Weighted Composition Operators on the Bloch Space [J].
Takuya Hosokawa ;
Quang Dieu Nguyen .
Integral Equations and Operator Theory, 2010, 66 :553-564
[45]   A Note on Weighted Composition Operators on the Fock Space [J].
Feng Li-xia ;
Zhao Lian-kuo ;
Ji You-qing .
CommunicationsinMathematicalResearch, 2015, 31 (03) :281-284
[46]   A class of weighted composition operators on the Fock space [J].
Feng, Lixia ;
Zhao, Liankuo .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (06) :1001-1017
[47]   Fredholm Weighted Composition Operators on Hardy Space [J].
Liankuo ZHAO .
数学研究及应用, 2013, 33 (03) :361-364
[48]   Eigenvalues of Weighted Composition Operators on the Bloch Space [J].
Hosokawa, Takuya ;
Nguyen, Quang Dieu .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (04) :553-564
[49]   Binormal Weighted Composition Operators on the Fock Space [J].
Jiang, Cao ;
Han, Shi-an .
JOURNAL OF FUNCTION SPACES, 2025, 2025 (01)
[50]   A Class of Weighted Composition Operators on the Fock Space [J].
Liankuo ZHAO ;
Changbao PANG .
Journal of Mathematical Research with Applications, 2015, 35 (03) :303-310