Tight representations of semilattices and inverse semigroups

被引:0
作者
R. Exel
机构
[1] Universidade Federal de Santa Catarina,Departamento de Matemática
来源
Semigroup Forum | 2009年 / 79卷
关键词
Semilattices; Inverse semigroups; Boolean inverse semigroups; Tight representations; Continuous inverse semigroups;
D O I
暂无
中图分类号
学科分类号
摘要
By a Boolean inverse semigroup we mean an inverse semigroup whose semilattice of idempotents is a Boolean algebra. We study representations of a given inverse semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{S}$\end{document} in a Boolean inverse semigroup which are tight in a certain well defined technical sense. These representations are supposed to preserve as much as possible any trace of Booleanness present in the semilattice of idempotents of  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{S}$\end{document} . After observing that the Vagner–Preston representation is not tight, we exhibit a canonical tight representation for any inverse semigroup with zero, called the regular tight representation. We then tackle the question as to whether this representation is faithful, but it turns out that the answer is often negative. The lack of faithfulness is however completely understood as long as we restrict to continuous inverse semigroups, a class generalizing the E*-unitaries.
引用
收藏
页码:159 / 182
页数:23
相关论文
共 6 条
[1]  
Exel R.(2008)Inverse semigroups combinatorial C*-algebras Bull. Braz. Math. Soc. (N.S.) 39 191-313
[2]  
Gerber C.(1991)The model companion of Stone semilattices Z. Math. Log. Grundl. Math. 37 501-512
[3]  
Schmid J.(1984)On localizations and simple C*-algebras Pac. J. Math. 112 141-192
[4]  
Kumjian A.(1936)The theory of representations for Boolean algebras Trans. Am. Math. Soc. 40 37-111
[5]  
Stone M.H.(1987)A generalization of McAlister’s P-theorem for E-unitary regular semigroups Acta Sci. Math. 51 229-249
[6]  
Szendrei M.B.(undefined)undefined undefined undefined undefined-undefined