Gallai–Ramsey Numbers Involving a Rainbow 4-Path

被引:0
作者
Jinyu Zou
Zhao Wang
Hong-Jian Lai
Yaping Mao
机构
[1] Qinghai University,School of Mathematics and Physics
[2] China Jiliang University,College of Science
[3] West Virginia University,Department of Mathematics
[4] Qinghai Normal University,Academy of Plateau Science and Sustainability, and School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Ramsey theory; Gallai–Ramsey number; Pineapple; Star with extra independent edges; 05D10; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Given two non-empty graphs G, H and a positive integer k, the Gallai–Ramsey number grk(G:H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {gr}}_k(G:H)$$\end{document} is defined as the minimum integer N such that for all n≥N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge N$$\end{document}, every k-edge-coloring of Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} contains either a rainbow colored copy of G or a monochromatic copy of H. In this paper, we got some exact values or bounds for grk(P5:H)(k≥3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {gr}}_k(P_5:H) \ (k\ge 3)$$\end{document} if H is a general graph or a star with extra independent edges or a pineapple.
引用
收藏
相关论文
共 70 条
[1]  
Bondy JA(1973)Ramsey numbers for cycles in graphs J. Combin. Theory Ser. B 14 46-54
[2]  
Erdős P(1997)Lambda composition J. Graph Theory 26 9-16
[3]  
Cameron K(2018)Gallai-Ramsey numbers of odd cycles and complete bipartite graphs Graphs Combin. 34 1185-1196
[4]  
Edmonds J(2008)Ramsey-type problem for an almost monochromatic SIAM J. Discrete Math. 23 155-162
[5]  
Chen M(2012)Extensions of Gallai-Ramsey results J. Graph Theory 70 404-426
[6]  
Li Y(2011)Gallai-Ramsey numbers for cycles Discrete Math. 311 1247-1254
[7]  
Pei C(1967)Transitiv orientierbare Graphen Acta Math. Acad. Sci. Hung. 18 25-66
[8]  
Fox J(2020)Distribution of colors in Gallai colorings Eur. J. Combin. 86 233-243
[9]  
Sudakov B(2010)Ramsey-type results for Gallai colorings J. Graph Theory 64 211-216
[10]  
Fujita S(2004)Edge colorings of complete graphs without tricolored triangles J. Graph Theory 46 1603-1618