Computing eigenvalues of semi-infinite quasi-Toeplitz matrices

被引:0
作者
D. A. Bini
B. Iannazzo
B. Meini
J. Meng
L. Robol
机构
[1] University of Pisa,
[2] University of Perugia,undefined
[3] Ocean University of China,undefined
来源
Numerical Algorithms | 2023年 / 92卷
关键词
Toeplitz matrices; Eigenvalues; Infinite matrices; Nonlinear eigenvalue problem; MATLAB; Operators; Spectrum; 15A18; 15B05; 47A75; 65F15; 65H17;
D O I
暂无
中图分类号
学科分类号
摘要
A quasi-Toeplitz (QT) matrix is a semi-infinite matrix of the form A=T(a)+E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=T(a)+E$$\end{document} where T(a) is the Toeplitz matrix with entries (T(a))i,j=aj-i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T(a))_{i,j}=a_{j-i}$$\end{document}, for aj-i∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{j-i}\in \mathbb {C}$$\end{document}, i,j≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i,j\ge 1$$\end{document}, while E is a matrix representing a compact operator in ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2$$\end{document}. The matrix A is finitely representable if ak=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_k=0$$\end{document} for k<-m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k<-m$$\end{document} and for k>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>n$$\end{document}, given m,n>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n>0$$\end{document}, and if E has a finite number of nonzero entries. The problem of numerically computing eigenpairs of a finitely representable QT matrix is investigated, i.e., pairs (λ,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda ,\varvec{v})$$\end{document} such that Av=λv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\varvec{v}=\lambda \varvec{v}$$\end{document}, with λ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {C}$$\end{document}, v=(vj)j∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{v}=(v_j)_{j\in \mathbb {Z}^+}$$\end{document}, v≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{v}\ne 0$$\end{document}, and ∑j=1∞|vj|2<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum }_{j=1}^\infty |v_j|^2<\infty$$\end{document}. It is shown that the problem is reduced to a finite nonlinear eigenvalue problem of the kind WU(λ)β=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$WU(\lambda )\varvec{\beta }=0$$\end{document}, where W is a constant matrix and U depends on λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} and can be given in terms of either a Vandermonde matrix or a companion matrix. Algorithms relying on Newton’s method applied to the equation det WU(λ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$WU(\lambda )=0$$\end{document} are analyzed. Numerical experiments show the effectiveness of this approach. The algorithms have been included in the CQT-Toolbox [Numer. Algorithms 81 (2019), no. 2, 741–769].
引用
收藏
页码:89 / 118
页数:29
相关论文
共 50 条
[41]   A fast algorithm for computing the pseudospectra of Toeplitz matrices [J].
Wang, Zhengsheng ;
Liu, Chuntao ;
Li, Yuanjun .
APPLIED MATHEMATICS LETTERS, 2013, 26 (02) :184-188
[42]   Computing eigenvalues of quasi-rational Bernstein-Vandermonde matrices to high relative accuracy [J].
Yang, Zhao ;
Ma, Xiao-Xiao .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (03)
[43]   Asymptotics of eigenvalues of large symmetric Toeplitz matrices with smooth simple-loop symbols [J].
Batalshchikov, A. A. ;
Grudsky, S. M. ;
Malisheva, I. S. ;
Mihalkovich, S. S. ;
Ramirez de Arellano, E. ;
Stukopin, V. A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 580 :292-335
[44]   A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices [J].
Ekstrom, Sven-Erik ;
Garoni, Carlo .
NUMERICAL ALGORITHMS, 2019, 80 (03) :819-848
[45]   Spectra of Semi-Infinite Quantum Graph Tubes [J].
Stephen P. Shipman ;
Jeremy Tillay .
Letters in Mathematical Physics, 2016, 106 :1317-1343
[46]   Using MPI on PC Cluster to Compute Eigenvalues of Hermitian Toeplitz Matrices [J].
Noor, Fazal ;
Misbahuddin, Syed .
ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PT 1, PROCEEDINGS, 2010, 6081 :313-323
[47]   Parallel computation of the eigenvalues of symmetric Toeplitz matrices through iterative methods [J].
Vidal, Antonio M. ;
Garcia, Victor M. ;
Alonso, Pedro ;
Bernabeu, Miguel O. .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2008, 68 (08) :1113-1121
[48]   Asymptotics of the eigenvalues of seven-diagonal Toeplitz matrices of a special form [J].
Barrera, M. ;
Grudsky, S. ;
Stukopin, V. ;
Voronin, I. .
ADVANCES IN OPERATOR THEORY, 2024, 9 (04)
[49]   Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form? [J].
Ekstroem, Sven-Erik ;
Garoni, Carlo ;
Serra-Capizzano, Stefano .
EXPERIMENTAL MATHEMATICS, 2018, 27 (04) :478-487
[50]   Infinite Toeplitz and Hankel matrices with operator-valued entries [J].
Bottcher, A ;
Silbermann, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (03) :805-822